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Abstract. Three theorems of combinatorial set theory are proven. From the

first we obtain the de Groot inequality \X\ < 2 ( , the Ginsburg-Woods

inequality \X\ < 2e{x)ù,{X), the Erdös-Rado Partition Theorem for « = 2,

and set-theoretic versions of the Hajnal-Juhász inequalities \X\ < 2C( '*' '

and \X\ < 2i( '*'( ' . From the second we obtain a generalization of the

Arhangel'skii inequality \X\ < 2 ' '*' '. From the third we obtain the Charles-

worth inequality n(X) < psw(X) ( J and a generalization of the Burke-Hodel
e(X)psw{X)

inequality \K(X)\ < 2

0. Introduction

It is well known that combinatorial set theory plays an important role in

the theory of cardinal functions. Perhaps the best example of this is the use

of the Erdös-Rado Partition Theorem to prove the Hajnal-Juhász inequalities

\X\ < 2S(X)V(X) and \X\ < 2c{X)x(X). In this paper we further explore the close

connection between theorems of combinatorial set theory and cardinal function

inequalities.

Standard set-theoretic notation is used; k and X denote infinite cardinals;

co is the first infinite cardinal; a, ß, y, ô denote ordinals; KA is the set of all

functions from k into the set A ; [E] = {{x, y} : x, y e E and x ^ y} ; if

& is a collection of sets, ord(x, ¿/) is the number of elements of & which

contain x ; a cover A7 of a set E is separating if given distinct x, y in E,

there exists S e S* such that x e S, y çé S.

Cardinal function notation is also fairly standard: nw , L, hL , c, e, psw ,

A, x , W > and t denote net weight, Lindelöf degree, hereditary Lindelöf degree,

cellularity, extent, point separating weight, diagonal degree, character, pseudo-

character, and tightness, respectively.
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The cardinal function extent is used on several occasions in this paper and

so we discuss it in some detail. By definition, the extent of a topological space

X, denoted e(X), is the infinite cardinal defined by

e(X) = sup{|D| : D a closed, discrete subset of X } + co.

This cardinal function has numerous characterizations, as the following lemma

shows.

Lemma 1. Let X be a Tx space, let k be an infinite cardinal.  The following

are equivalent:

(1) every subset of X of cardinality greater than k has a limit point;

(2) every closed, discrete subset of X has cardinality at most tc ;

(3) if 2? is an open cover of X and A c X, there exists B c A with

\B\<k such that A c st(B, &) ;

(4) if 77 is a closed subset of X and "§ is an open collection in X which

covers 77, there exists B c 77 with \B\ < k such that 77 c st(B, &) ;

(5) every locally finite collection of subsets of X has cardinality at most k .

To justify Lemma 1, note that (1) o (2) is obvious; the proof that (2) => (3)

(for the countable case) appears in [H2]; (3) => (4) and (4)=>(1) are easy;

(5) => (1) is obvious, and the proof that (1) => (5) appears in [HI].

1. First combinatorial theorem

In the statement of Theorem I, S is for separating, HC is for hereditary cover.

Theorem I. Let k be an infinite cardinal, let E be a set. For each x e E and

each y <k let V(y, x) be a subset of E which contains x. Assume that

(S) if x ¿ y, there exists y < tc such that y £ V(y, x) ;

(HC) for each y <k and each A c E, there exists B c A with \B\ < k such

that Ac\\xeBV(y,x).

Then \E\ < 2K .

Proof. Construct a sequence {Ea : 0 < a < k+} of subsets of E such that

these two conditions hold for all a < k+ :

(1) \Ea\ <2K;
(2) if {By : y < k} is a collection of at most k subsets of \Jß<aEß with

\By\<K for each y < k, and W^E, where W= \j7<K([jxeB V(y, x)),

then E -W ±<Z>.

Let L = UQ<K+ Ea ; clearly \L\ < 2K , and so the proof is complete if L = E.

Suppose not, and let y e E - L. For each y < k let A = {x : x e L

and y £ V(y,x)}. By (S), L = \\y<KAy. By (HC), for each y < k there

exists By c A with \B\ < k such that A C \Jx€B V(y,x). Let W =

UyocdJjcgB V(y > ■*)) - and note tnat EcW and y $ W. Choose a so large

that \Jy<K B c [jß<a Eß . By (2), Ea - W ± 0 . This contradicts LcW.
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Corollary 1 (de Groot). For XeT2, \X\< 2hL(x).

Proof. Let k = hL(X). Now y/(X) < hL(X) for X Hausdorff, hence for each

point x e X there is a collection {V(y, x) : y <k} of open neighborhoods of

x such that f]y<K V(y, x) = {x}. Clearly (S) and (HC) of Theorem I hold so

\X\ < 2k .

Corollary 2 (Ginsburg-Woods). For X e Tx, \X\ < 2e{X)A[X).

Proof. Let k = e(X)A(X). Since A(X) < k , there is a sequence {2? : y < k}

of open covers of X such that if x ^ y, there exists y < k such that y ^

st(x, "§y). For x e X, y < k let V(y, x) = st(x, &y). Then (S) clearly holds,

and e(X) < k implies that (HC) holds (see (3) of Lemma 1). By Theorem I,

1*1 < 2K .

Corollary 3 (Erdös-Rado Partition Theorem, « = 2 ). Let k be an infinite

cardinal, let E be a set with \E\ > 2K, and let [E]   = [J     Py.   Then there

exists y < k and B c E with \B\ > k such that [B]  c Py.

Proof. For x 6 E and y < k let

V(y, x) = {x} U {y : y e E, y ¿ x and {x, y} ^ Py}.

Since [Tí]2 = [J P , (S) holds. But \E\ > 2K , so by Theorem I there is some

subset A of E and some y < k for which (HC) fails. Construct a sequence

B = {xa : 0 < a < k+} of distinct points of A such that for all a < k+ ,

xa i U¿,<a V(y, xß). Then \B\ > k and [B]2 c Py.

Not surprising is the fact that Theorem I can be obtained from Corollary 3.

Erdös-Rado Partition Theorem =>Theorem I. Let {V(y, x) : x e E, y < k}

satisfy (S) and (HC), but suppose \E\ > 2K . Let < be a well ordering on E,

and for each y < k let

Py = {{•*> y} '■ x < y and y i V(y ,x), or y < x}.

By (S), [E] c \Jy<KPy, so there exists A c E with \A\ > k and y < k such

that [A]2 c P . Choose a subset AQ of A with \A0\ = k+ such that (A0, <) is

order isomorphic to k+ (thus no subset of AQ of cardinality < k runs through

A0 ). By (HC), there exists B c A0 with \B\ < k such that A0 c (jx€B V(y, x).

Choose y e A0 such that x < y for all x e B, and then choose x e B such

that y e V(y, x). Now {x, y} e 7* and x < y, hence y £ K(y, x), a

contradiction.

Once the Erdös-Rado Partition Theorem is available, there are easy proofs

of the Hajnal-Juhász inequalities \X\ < 2s(X)v(X) and \X\ < 2c{X)x(X) ; see [HJ]

or [H3, p. 21]. In fact, these proofs actually yield set-theoretic versions of the

two inequalities (Corollaries 4 and 5 below). In the following, PD is for pairwise

disjoint, HS is for Hausdorff separating, US is for uniform separating, and D is

for discrete.
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Corollary 4. Let k be an infinite cardinal, let E be a set. For each x e E and

each y < k let V(y, x) be a subset of E which contains x. Assume that

(HS) if x ■£ y, there exists y <k such that V(y, x) n V(y, y) = 0 ;

(PD) if y <k and A is a subset of E such that {V(y, x) : x e A} is pairwise

disjoint, then \A\ < k ;

then \E\ < 2K .

Corollary 5. Let k be an infinite cardinal, let E be a set. For each x e E and

each y <k let V(y, x) be a subset of E which contains x. Assume that

(US) if x a4 y, there exists y <k such that y $ V(y, x) and x <£ V(y, y) ;

(D) if y < k and A  is a subset of E such that for all x, y in A  with

x t¿ y, y <£ V(y, x), then \A\<k;

then \E\ < 2K .

2. Second combinatorial theorem

From Theorem I we obtain a number of the fundamental inequalities in

cardinal functions. Obviously missing is the Arhangel'skii inequality 1*1 <

2 ( )x( ) Theorem II of this section gives a generalization of this important

inequality. In the statement of the theorem, HS is for Hausdorff separating, C

is for cover.

Theorem II. Let k be an infinite cardinal, let E be a set. For each x e E and

each y < k let V(y, x) be a subset of E which contains x . Assume that

(HS) if x t¿ y, there exists y <k such that V(y, x) n V(y, y) = 0 ;

(C) if 'V is a subcollection of {V(y, x) : y < k , x e E} which covers E,

there is a subcollection of 'V of cardinality < k which covers E.

Then \E\ < 2K .

Proof. The proof is similar to Pol's proof of Arhangel'skii's inequality, but we

need to replace the closure operation in a topological space. For L c E let

L* = {x : x e E, V(y, x) n L ^ 0 for all y < k} .

We first prove two properties of this operator.

(PI) if \L\ < 2*, then \L*\ < 2K ;
(P2) if L = Uq<k+ E*a , where {Ea : 0 < a < k+} is a sequence of subsets of

E with \Jß<a E*o C Ea for all a < k+ , then L* = L.

(PI) is proved by constructing a one-to-one function <P : L* —► KL; since

| KL\ = \L\K < (2K)K = 2K , we then have \L'\ < 2K . For x e L*, let <P(x) = Fx ,

where Fx is a function from k into L such that for all y < k, Fx(y) e

L n V(y, x). The condition (HS) implies that <P is one-to-one.

To prove (P2), it suffices to show that L* c L. Let x e L* ; for each y < k

there exists xy e V(y, x) n L. Choose a < k+ so large that {xy : y < k} c

Uß<aE*ß. Now \Jß<aE*ß c EQ and so V(y,x)nEa ¿ 0 for all y < k. It

follows that x e E*, hence x e L.
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We now turn to the proof that \E\ <2K . Construct sequences {Ea : 0 < a <

k+} and {Va : 1 < a < k+} such that for a < k+ :

(1) E   is a subset of E with \E I < 2K :

(2) {Jß<aE*ßcEa;

(3) Ta = {V(y,x):xe[\ß<aE'ß, y < k} ;

(4) if W is the union of at most k elements of 2^ and W ^ E, then

E  -W ==0.

Let L = Uq<k+ E*a ; then \L\ < 2K , and so the proof is complete if L = E.

Suppose not, and let y e E - L. For each x e L, choose yx such that

y ^ V(yx, x), and for each x $ L ( = L* by (P2)) choose yx such that

v(yx , x) n L = 0. The collection {V(yx , x) : x e E} covers E, so by (C)

there is a subset B of E with \B\ < k such that {V(yx, x) : x e B} covers E.

Let B0 = Br\L and let W = [jxeB V(yx, x). It is clear from the construction

of the original cover of E that L cW and y $ W. Now choose a so large

that B0 c \Jß<a E*ß. By (3) Ea - W # 0, and this contradicts T. C W.

From Theorem II it is possible to obtain a generalization of Arhangel'skii's in-

equality. First we define a new cardinal function which we call Hausdorff pseudo-

character and denote 77^ . This cardinal function is defined only for Hausdorff

spaces, and for such spaces y/(X) < Hy/(X) < x(X).

Definition. Let X be a Hausdorff space. The Hausdorff pseudo-character of

X is the smallest infinite cardinal k such that for every x e X, there is a

collection %Ax of open neighborhoods of x with \%x\<k such that if x ^ y,

there exist U € V, and V e í¿v with Uf)V = 0.

Corollary 6. For XeT2, \X\ < 2L{X)Hy/{X).

Proof. Let L(X)Hy/(X) = k , and for each x e X let {U(y, x) : y < k} be a

collection of open neighborhoods of x satisfying the condition for Hausdorff

pseudo-character. For x e X and each pair y, ô <k let

V({y,â},x) = U(y,x)nU(ô,x).

Then (HS) and (C) are satisfied and so by Theorem II we have \X\ < 2K .

We note that the Hajnal-Juhász inequality \X\ < 2c(X)*(x) also holds with

character weakened to Hausdorff pseudo-character (see §1, Corollary 4). In

other words we have:

\X\<2C{X)HV{X), forXeT2.

Example (Sierpiñski). There is a Hausdorff, hereditarily Lindelöf space X with

Hy/(X) = co and t(X) > co. Let ST denote the usual topology on the set R

of real numbers, and let AT* = {V - A : V e AT, A c R and A countable}.

Then AA~* is a stronger topology on R and the space (R, A7~*) has the desired

properties.
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3. Third combinatorial theorem

Let K(X) denote the collection of all compact subsets of X. Burke and

Hodel [BH] have proved that \K(X)\ < 2e{X)psw{X). The first step is to show

that \X\ < 2e^psw^ ; Miscenko's lemma is then used to finish the proof.

Two proofs of the inequality \X\ < 2f( 'psw^ are given in [BH]; one uses an

intersection theorem of Erdös-Rado, the other uses the closure method (similar

to the proofs of Theorems I and II). As we now show, the two proofs actually

yield different bounds which happen to coincide when k = X.

In the proof of Theorem III below we use the following result of Engelking

and Karlowicz [EK]; its proof depends upon an intersection theorem of Erdös-

Rado.

Lemma. Let k and X be infinite cardinals, let {At : t e T} and {Bt: t e T}

be collections of sets satisfying these three conditions:

(1) \At\<K and \Bt\<X forall teT;
(2) AtnB, = 0 for all teT;
(3) for s, t distinct elements of T, AsnBt^0.

Then \T\ <XK.

In the statement of Theorem III, O is for order and C is for cover.

Theorem III. Let k , X be infinite cardinals, let E be a set, let ¿9* be a separating

cover of E. Assume that

(0) for all xeE, ord(x, S") < k ;
(C) if «5^ is a subcollection of A? which covers E, then some subcollection

of S*0 of cardinality at most X covers E.

Then \A?\<min{XK ,kx}.

Proof. We first use the closure method to show that \SA\ < k . Construct a

sequence {Ea : 0 < a < X+} of subsets of E and a sequence {S^ : 1 < a < X+}

of subcollections of ¿A' such that for a < X+ :

(1) \Ea\ <kx and \S?a\ <Kk;

(2) s{={S:SeS", Sr){Jß<aEß)t0};
(3) if W is the union of at most X elements of ¿9'a and W £ E, then

E - W 3=0.
a '

Let L = \Aa<x+ Ea, and note that |L| < kx • X+ = kx . We now argue that

every element of 5A intersects L. If this is so, it follows from (O) that \A7'\ <

\L\-K<Kl-K = KX .

Let SQ e ¿A* but suppose that SQ n L = 0 . Let y e S0 and let & = {S : S e

SA ,y $ S} . Since S" is separating, 2? U {S0} is a subcollection of S* which

covers E. By (C) there is a subcollection & of 2* of cardinality at most X

such that %A covers E-S0. Let W = {S : S e ¿T, S n L ± 0} , and note

that \W\ < X and that W covers L. Choose a so large that W c SAa, and
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let IV = uW. Now y g W so W / Tí, hence by (3) £a - W = 0. This
contradicts L c PT.

We now use the Engelking-Karlowicz Theorem to show that \S"\ < XK . For

each x e E let

S"x = {S:xeS},       SAX = {S : x £ S}.

Note that \S"X\ < k by (O). Fix x e E and write Se'x = {Sa : 0 < a < k} .

For each a < k , {Sa} uA/fx is a subcollection of S* which covers E, so by

(C) there exists W c -S* with \W\<X and W covers 7± - S . Moreover,

^i = LL^ ^ is a subcollection of J?7 with 13^1 < à-k which covers E—{x\ .
X ^^ Cx^.K        Ot '       X ^

In summary, we have subcollections {S*x : x e E} and {^ : x e 7i} of S*

satisfying

(1) \S"x\<k and \Wx\<X-k;

(2) S"xV\Wx = 0;
(3) for x ¿ y , S"y n Wx # 0 (recall that ^ covers 7i - {x} ).

Thus the Engelking-Karlowicz Theorem applies and \E\ < (X • k)k = XK.  It

follows that ]S"\ < XK ■ k = XK .

Corollary 7 (Charlesworth). For X e Tx, niu(X) < psw(X)L{X).

Proof. Let psw(X) = k, L(X) = X, and S" be a separating open cover of

X with ord(x, S") < tc for all x e X. By Theorem III we have \Sfi\ < k* .

Let AA = {X - S : S is the union of at most X elements of S*}.   Then

\jr\ < (KY = KA and AA is a net for X.

Before stating the next application of Theorem III we give a generalization of

extent. For any space X the weak extent of X is the smallest infinite cardinal k

such that if 2? is any open cover of X, there is a subset B of X with |7?| < k

such that 5?(7i, 2?) = X. It is clear from Lemma 1 that we(X) < e(X) ;

note also that we(X) < d(X). This cardinal function was first introduced by

MuMing in [MM]; he calls this cardinal function the * Lindelöf number and

denotes it by *L(X). MuMing and Sun-Wang [SW] independently proved

that \K(X)\ < 2we{x)psw{X), thereby generalizing the Burke-Hodel inequality.

Corollary 8 generalizes the MuMing-Sun-Wang inequality.

Corollary 8. For X e Tx, \K(X)\ < we(X)psw{X).

Proof. Let psw(X) = k , we(X) = X, and let S* he a separating open cover

of X such that ord(x, S") < k for all x e X. As a first step, we use Theorem

III to prove that \S*\ < XK. To check (C), let ¿9% be a subcollection of S"

which covers X. Since we(X) = X, there exists B c X with \B\ < X such

that st(B ,S^) = X. Now ord(x, S") < k for all xeX, and thus {SeS"0:

S ilB ^ 0} is a subcollection of S"Q of cardinality at most k ■ X which covers

X. By Theorem III we conclude that \S"\ < (k ■ Xf = XK .

Next we prove that \X\ < XK . Let S?* = {S : S is the intersection of at most

k elements of S"}. Now LS**! < XK , and the function C>: X -» S** defined
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by <P(x) = (~){S : x e S} is one-to-one (S" is separating), hence \X\ < XK.

Finally, one can use Miscenko's Lemma to show that |j8T(X)| < XK ; see [BH]

for details.

The inequality in Corollary 8 is new. To illustrate, suppose X is a Tx space

with a point-countable separating open cover such that every closed, discrete

subset of X has cardinality at most 2W . Then the number of compact subsets

of X is at most 2W .

Concluding remarks. The closure method, also referred to as the Pol-Sapirovskii

technique in [H2] and [H3] (see [P, S]), is fundamental in the proofs of Theo-

rems I, II, and III. This is obvious in the case of the first two theorems and the

first part of the third theorem. Moreover Michael [M] has given a proof of the

Erdös-Rado Intersection Theorem using the closure method.
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