COMMENTS ON AN L^2 INEQUALITY OF A. K. VARMA INVOLVING THE FIRST DERIVATIVE OF POLYNOMIALS

LI-CHIEN SHEN

(Communicated by J. Marshall Ash)

ABSTRACT. Let t_n be a trigonometric polynomial of degree n with real coefficients, and let $w(x) \in C^2[0, \pi]$ be nonnegative. Employing a well-known result of G. Szegő, we study the extremal property of the integral

$$\int_0^{\pi} (t'_n(x))^2 w(x) dx,$$

subject to the constraint $||t_n||_{\infty} \leq 1$.

1. Introduction

Let w(x) be a nonnegative function defined on the interval $[0,\pi]$ and $t_n(x)$ be a trigonometric polynomial of degree n with real coefficients such that $\|t_n\|_{\infty} = \max_{0 \le x \le 2\pi} |t_n(x)| \le 1$. The intention of this paper is to study the following quantity:

$$\sup_{\|t_n\|_{\infty} \le 1} \int_0^{\pi} (t'_n(x))^2 w(x) \, dx \, .$$

Recently, A. K. Varma [2] considered the above problem for $w(x) = \sin x$ and proved the following:

Theorem A. Let t_n be a trigonometric polynomial of degree n with real coefficients such that $||t_n||_{\infty} \leq 1$. Then

$$\int_0^{\pi} (t'_n(x))^2 \sin x \, dx \le n^2 \left(1 + \frac{1}{4n^2 - 1} \right) = \int_0^{\pi} (C'_n(x))^2 \sin x \, dx \,,$$

where $C_n(x) = \cos nx$.

Exploring Varma's method, we will establish, among other things, the following theorem.

Received by the editors February 13, 1989 and, in revised form, February 14, 1990; this paper was presented at the meeting of the American Mathematical Society, Manhatten, Kansas, March 16, 1990.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 41A17.

956 L.-C. SHEN

Theorem 1. Let t_n be the same as above. Then, for $n \ge 2$,

$$\int_0^{\pi} (t'_n(x))^2 \sin^2 x \, dx \le \int_0^{\pi} (C'_n(x))^2 \sin^2 x \, dx.$$

In §2, we will first establish a key identity and then derive Theorem 1 from it. A closely related problem of finding the extremal value for

$$\int_{-1}^{1} (P'_n(x))^2 (1-x^2)^{\alpha} dx,$$

where P_n is a polynomial of degree n with real coefficients subject to the condition $\max_{|x| \le 1} |P_n(x)| \le 1$, and α is some suitably chosen real value, is discussed in §3.

2. A BASIC IDENTITY AND ITS CONSEQUENCES

Our method is based on the following well-known result of G. Szegő:

Theorem B. Let t_n be a trigonometric polynomial of degree n with real coefficients and $|t_n(x)| \le M$ for all real x. Then

$$n^2 t_n^2 + (t_n')^2 \le M^2 n^2$$
,

and the equality holds if and only if $t_n(x) = M\cos(nx+a)$ for some real constant a.

Imitating Varma's approach, we deduce the following:

Lemma 1. Let w(x), $f(x) \in C^2[a, b]$ and s be any nonzero real number. Then

(2.1)
$$\int_{a}^{b} (f'(x))^{2} \left(2w(x) + \frac{1}{2s^{2}}w''(x)\right) dx$$

$$= \frac{1}{2} \int_{a}^{b} \left[(f'(x))^{2} + s^{2}f^{2}(x) \right] \left(w(x) + \frac{1}{s^{2}}w''(x) \right) dx$$

$$+ \frac{1}{2} \int_{a}^{b} \left[s^{2}(f'(x)/s)^{2} + (f''(x)/s)^{2} \right] w(x) dx$$

$$- \frac{1}{2s^{2}} \int_{a}^{b} (s^{2}f(x) + f''(x))^{2}w(x) dx + A + B,$$

where

$$A = f(b)f'(b)w(b) - f(a)f'(a)w(a)$$

and

$$B = \frac{1}{2}(f^{2}(a)w'(a) - f^{2}(b)w'(b)).$$

Since this identity can be verified easily by multiplying out and combining the terms on each side, we omit the proof. We now deduce Theorem A from this lemma. To do so we choose $f(x) = t_n$ and s = n. Then, from Theorem B, we have

$$(2.2) (t'_n(x))^2 + n^2 t_n^2(x) \le n^2 ||t_n||_{\infty}^2$$

and

$$n^{2}(t'_{n}(x)/n)^{2} + (t''_{n}(x)/n)^{2} \le n^{2} ||t_{n}||_{\infty}^{2}$$

We now assume that w(x) satisfies the following properties on the interval $[0, \pi]$:

(2.3)
$$w(x) \ge 0, w(0) = w(\pi) = 0$$

and

(2.4)
$$w(x) + \frac{1}{n^2}w''(x) \ge 0$$
 for every n .

From (2.3), we see that, if $||t_n||_{\infty} \leq 1$,

(2.5)
$$w'(0) \ge 0, w'(\pi) \le 0, A = 0 \text{ and } B \le \frac{1}{2}(w'(0) - w'(\pi)).$$

From Lemma 1 and (2.2)–(2.5), we obtain

(2.6)
$$\int_0^{\pi} (t'_n)^2 \left(w + \frac{1}{4n^2} w'' \right) dx \le \frac{n^2}{2} W,$$

where $W = \int_0^\pi w(x) \, dx$; the equality holds if and only if $t_n = \pm \cos nx$. We now see that Theorem A follows from (2.6) by observing that $w(x) = \sin x$ satisfies all the required properties.

For a more general w(x), we have the following less precise result. Since the proof is very straightforward, we omit it here.

Theorem 2. Let $w \in C^2[0, \pi]$, $w \ge 0$, and $w(0) = w(\pi) = 0$, and let t_n be a trigonometric polynomial of degree n with real coefficients. Then

(2.7)
$$\sup_{\|t_n\|_{\infty} \le 1} \int_0^{\pi} (t'_n(x))^2 w(x) \, dx = \frac{n^2}{2} W + E_n,$$

where E_n is a constant and

$$|E_n| \le \frac{1}{4}(w'(0) - w'(\pi)) + \frac{1}{2} \int_0^{\pi} |w''(t)| dt.$$

This theorem is sharp in the sense that, asymptotically, the supremum of the integral in (2.7) is almost achieved by choosing $t_n = \cos nx$.

We now prove Theorem 1. We will base our proof on the following lemma:

Lemma 2. Let $w \in C^2[0, \pi]$ and t_n be the same as in Theorem A. If for each positive integer n, there exists a function $w_n \in C^2[0, \pi]$ satisfying the differential equation

$$(2.8) w_n + \frac{1}{4n^2}w_n'' = w$$

and the properties (2.3) and (2.4), then

$$\int_0^{\pi} (t'_n(x))^2 w(x) \, dx \le n^2 W_n / 2,$$

where $W_n = \int_0^{\pi} w_n(x) dx$ and the equality holds if $t_n = \cos nx$.

958 L.-C. SHEN

The proof follows immediately from Lemma 1.

To prove Theorem 1, we choose $w = \sin^2 x$. It is easy to verify that

$$w_n = \frac{n^2}{n^2 - 1} \left(\sin^2 x - \frac{\sin^2 nx}{n^2} \right)$$

is a solution of the differential equation (2.8) and that it satisfies (2.3). Since

$$w_n + \frac{1}{n^2}w'' = (n^2 - 1)^{-1}(3\sin^2 nx + (n^2 - 4)\sin^2 x) \ge 0$$

for $n \ge 2$, we see that (2.4) is also satisfied. Theorem 2 now follows from Lemma 2.

It is worthwhile to point out that the above method fails for $w = \sin^3 x$, that is, for each integer n, the differential equation $w + w''/4n^2 = \sin^3 x$ does not possess a solution w_n satisfying conditions (2.3) and (2.4). To see this, we note that $w(x) = \sin^3 x$ satisfies the equation

(2.9)
$$w + \frac{1}{4n^2}w'' = \left(1 - \frac{9}{4n^2}\right)w + \frac{3}{2n^2}\sin x,$$

and $u = -6 \sin x/(4n^2 - 1)$ satisfies the equation

$$(2.10) w + \frac{1}{4n^2}w'' = -\frac{3}{2n^2}\sin x.$$

From (2.9) and (2.10), we see that the general solution of this differential equation satisfying (2.3) has the form

(2.11)
$$w_n = \left(1 - \frac{9}{4n^2}\right)^{-1} \left(\sin^3 x - \frac{6}{4n^2 - 1}\sin x\right) + c_n \sin 2nx \,.$$

Then

(2.12)
$$\lim_{x \to 0} \frac{w_n(x)}{\sin x} = -\frac{6}{4n^2 - 1} \left(1 - \frac{9}{4n^2} \right)^{-1} + 2nc_n$$

and

(2.13)
$$\lim_{x \to \pi} \frac{w_n(x)}{\sin x} = -\frac{6}{4n^2 - 1} \left(1 - \frac{9}{4n^2} \right)^{-1} - 2nc_n.$$

From (2.12) and (2.13), we see that it is impossible to choose c_n so that $w_n \ge 0$ in $[0, \pi]$.

3. A RELATED PROBLEM

Let P_n be a polynomial of degree n with real coefficients and

$$\max_{x \in [-1, 1]} |P_n(x)| \le 1.$$

Let $t_n(x) = P_n(\cos x)$. Then, from Theorems A and 1, we conclude that

(3.1)
$$\int_{-1}^{1} (P'_n(x))^2 (1-x^2)^{\alpha} dx \le \int_{-1}^{1} (T'_n(x))^2 (1-x^2)^{\alpha} dx$$

for $\alpha = 1$, 3/2, where $T_n(x)$ is the Tchebycheff polynomial of degree n.

By choosing w(x)=1 in Lemma 1 and observing that $t'_n(x)=-\sin x\,P'_n(\cos x)=0$ for x=0 and π , we conclude that (3.1) is also valid for $\alpha=1/2$. It is also noted by Varma in [2] that, using the Gauss quadrature formula, (3.1) holds for $\alpha=-1/2$. And, employing a very different method, D. B. Bojanov [1] proved that (3.1) holds for $\alpha=0$. In fact, he established the following theorem:

Theorem C. Let P_n be a polynomial of degree n with real coefficients and $\max_{|x| \le 1} |P_n(x)| \le 1$. Then, for $1 \le p < \infty$,

$$\int_{-1}^{1} |P'_n(x)|^p dx \le \int_{-1}^{1} |T'_n(x)|^p dx,$$

where T_n is the Tchebycheff polynomial of degree n.

And it will be interesting to know whether the L^2 norm in (3.1) can be extended to the L^p norm so that a result similar to Theorem C can be obtained for different values of α .

REFERENCES

- 1. B. D. Bojanov, An extension of the Markov inequality, J. Approx. Theory 35 (1982), 181-190.
- 2. A. K. Varma, On some extremal properties of algebraic polynomials, J. Approx. Theory (to appear).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF FLORIDA, GAINESVILLE, FLORIDA 32611