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THE SOUL AT INFINITY IN DIMENSION 4
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In memory of Martin Strake

Abstract. It is shown that 4-dimensional open manifolds with nonnegative

sectional curvature whose fibers are totally geodesic are metrically rigid. For

arbitrary dimension, one also concludes that the curvature is in a sense maximal

at the soul.

1. Introduction

Let (Mn, g) be an open «-manifold with nonnegative sectional curvature

K and soul S. It is known that there exists a Riemannian submersion M —> S

whenever n < 4 or the codimension of S is < 2 . In this note, we show that

if the fibers of M —> S are totally geodesic, then (M, g) itself is the result of

a Riemannian submersion from a product:

Theorem 1. Let M" be an open n-manifold of nonnegative curvature with soul

S, where n < 4 or codim 5 < 2. If the fibers of M —» 5 are totally geodesic,

then there exists a Riemannian submersion N x P —► M. Here N is compact,

P is diffeomorphic to R , both factors have metrics of nonnegative curvature,

and N x P   has the product metric.

Roughly speaking, N is the soul of the Hausdorff limit limt_too(M, y(t)),

where y is a ray from S. The proof of Theorem 1 relies heavily on the existence

of a Riemannian submersion M ^ S. It is not hard to see, however, that one

always has an infinitesimal submersion along rays from S. In fact, we have the

following weak version of O'Neill's formula for curvature:

Theorem 2. Let Mn be an open n-manifold with nonnegative curvature K and

soul S. Let y : [0, oo) —► M be a ray starting from S, and Pt be the parallel

translate along y\,0 t] of some 2-plane P0 c J' ,Q-.S. Then the function t >-* Kp

is nonincreasing on [0, oo).
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2. Proof of Theorem 1

The reader is referred to [2] for the general facts concerning nonnegative

curvature, to [6, 7] for the codim S = 2 case, and to [1] or [4] for Riemannian

submersions. We shall discuss the two cases (namely dim M < 4, and dim M >

4 but codimS < 2) simultaneously. Notice first that M may be assumed to

be simply connected with soul of codimension 2. For if dim M < 4, then

the universal covering map M -* M is a Riemannian submersion, and since

these submersions are preserved under composition, we need only establish the

theorem for M. But the soul S of M must have codimension 1 or 2, and

in the first case, M splits isometrically as 5xR. Next, suppose dim M > 4

and codim S < 2 . Consider once again the universal covering p : M —> M,

and let <S = p~l(S). By [2] S = S0 x R  , with S0 compact, simply connected,
k

and since »S is totally convex, there is a corresponding splitting M — MQxR .

Then S0 is a soul of MQ, of codimension = codim S, which by the above may

be assumed to equal 2, thereby establishing the claim.

Finally, we may assume that the normal bundle v(S) of S in M is not

flat, for otherwise, M = S x P isometrically. It follows that every geodesic

orthogonal to S is a ray, and the exponential map exp^ : u(S) —> M is a

diffeomorphism, cf. [6, 7]. Let

S(r) = {q£M/d(q,S) = r}

denote the distance sphere of radius r around S with its metric gr induced

from M.

2.1. Lemma. (S(r), gr) converges as r -* oo to (N, g^), where N is diffeo-

morphic to the unit sphere bundle v (S), and g^ is a C°° metric of nonnegative

curvature.

Proof. Given u e v(S), let x¥u denote the canonical vector space isomorphism

between the fiber through u and its tangent space at u. One has the polar

coordinate vector field dg on M\S given by dg, = exptx¥uJu, where J is

the complex structure on v(S)—recall that S is simply connected. Since the

fibers of M —> S are totally geodesic, dg is a Killing field on M, cf. [6, Lemma

1.7], In particular, G:=\de\ is a function which depends only on the distance

from the soul. Moreover, G : [0, oo) —> E is a concave, increasing, bounded

function [6]. Set a : = lim^^ G(r) < oo . Notice that (S(r), gr), being convex,

has nonnegative curvature by the Gauss equations, and the projection S(r) —> S

is a Riemannian submersion with totally geodesic fiber S generated by de.

Define q>r :v (S) —► S(r) by <pr(v) = exp(rv). Then q>*gr is just the standard

connection metric with \dg\ rescaled by G(r). Since G(r) —► a < oo, the

lemma follows.   D

2.2. Remark. (N, g^) can be viewed as the soul at infinity in the follow-

ing sense: let y : [0, oo) —> M be a ray from S. Then the Hausdorff limit

lim^ (M, y(t)) = (X, 0), where X is isometric to (N, g^) x R.
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indow R    with the metric g — dr2 +

Then the diagonal action of

Resuming the proof of Theorem 1, recall that since v(S) is a complex line

bundle,   N « v\S)  is just the corresponding principal Sl-bundle, and M
2 1

is diffeomorphic to  (N x R )/S

f2(r) dd2, where f2(r) = a2G2(r)/(a2 - G2(r))

Sl on (N, g^) x (R2, g) is by isometries. We claim that M is isometric to

(N x R2)/Sl . To see this, notice that (N x R2)/Sl is topologically [0, oo) x

N/ ~, where the fibers of N are collapsed at 0, and the metric has the form
2 2 2

dr + dar , where dar is a metric on N obtained by rescaling in the fiber

direction only. It thus suffices to check that the respective Killing fields of M

and (N xR2)/Sl have the same norm. Now, if p denotes the Riemannian

submersion p : N x R2 -» (TV x R2)/Si, then pointwise, the Killing field on the

quotient is /?„(0, d/dd), where d/dd is the polar coordinate vector field on

R . Since the vertical space of pt is spanned by (de, -d/dd), one computes,

for the horizontal component (0, d/dd)  :

h

°'á - o, d_

dd

Thus

2   ,    z-2a  +J

••£

A 2 d
>ad8

dD, -
d_

dd 2   i    f2
dp,   -7T7T

d

dd

0
d_

dd
af

(«+n2x1/2
= G. O

2.3.   Remark. It is sometimes possible to obtain M from a Riemannian sub-

mersion even when the fibers of M —* S are not totally geodesic. One such
2 2

example is M = S  xR . Here, the metric on M is not a product metric, but

comes from a submersion S  x M. On the other hand, consider S  x

with the standard metric, and let Sl act diagonally by isometries, on S3 via

the Hopf fibration, and on E2 by rotations. Then M : = (S3 x M2)/S1 -► S =
3       1 2

S /S k S has totally geodesic fibers. Nevertheless, there exists a deformation

ge of the metric g on M (with nonnegative sectional curvature), such that

(Af, g) is «o/ isometrically a quotient (S   x R )/S   for any metrics on S

and R . Of course, the fibers of M

details of both examples, see [6].

S are no longer totally geodesic. For

3. Proof of Theorem 2

We briefly recall some well-known facts about convex sets in a Riemannian

manifold M of nonnegative sectional curvature. The reader should consult

[2, 5] for proofs and further details. If C C M is convex with nonempty

boundary dC, and p : C —► R, p(p) := d(p,dC), denotes the distance

function to the boundary, then Ca : = {q e C/p(q) > a} is again convex.

Moreover, if Ca / 0, there exists a deformation retraction (p : C x [0, a] —* Ca

which is distance nonincreasing.   In general, the curves / <-* q>(p, t), which
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can be regarded as integral curves of a generalized gradient vp, need not be

smooth. It is, however, easy to check that by the very construction of cp (see

[5]) given q e Ca, and a minimal geodesic y from q to dC, -y is, up to

reparametrization, an integral curve of vp.

3.1. Lemma. Let S be a soul of M, and let y¡ be rays with yf(0) € S, i =

1.2. Then the function 11-» d{yx(t), y2(t)) is nondecreasing.

Proof. Performing the first step in the soul construction starting at yx (0), we

have, with the notation of [2], a family {Ct}t>0 of totally convex sets, with

ScC0 = {qeCl/d(q,dCt) = t}.

Fix any t > 0, and let p denote the distance function from dCt. By definition,

any ray from yx (0) is a minimal connection to dCt. But if u e Ty ,0)M denotes

the parallel translate of y2(0) along some geodesic from y2(0) to y,(0), then

t H-» exp(iw) is a ray (cf. [6]). It follows from [2, Theorem 1.10] that y2 itself

is a minimal connection to dCr Thus both yx and y2 are, up to negative

reparametrization, integral curves of vp. This establishes the lemma.

To complete the proof of Theorem 2, let x, y be an orthonormal basis of

P0, X ,Y the parallel vector fields along y with X(0) = x, 7(0) = y. For

t > 0, r > 0, consider the circles Cr t : [0, 2n] -» M,

Crt(d) = expy(i)r(cos 0 • X(t) + sin 0 • y(/)).

By [2, Theorem 1.10], the minimal geodesic from Cr o(0) to Cr t(d) is a

ray: indeed its initial tangent vector is the parallel translate of y(0) along

5 h-> expy(O)5(cos0 • x + sind -y). By 3.1, we have

d(crt(e),crt(d'))<d(crt,(d),crl,(d'))

for all 0,0', t < t'. Thus the length of Cr t is not bigger than the length of

Cr t>, if t < /. The theorem now follows from a well-known formula relating

the length of Cr t as r —► 0 with the sectional curvature of Pt, see for example

[3, p. 124].    D '

3.2.    Question. Theorem 2 says grosso modo that the curvature is maximal at

the soul. Notice that / <-> Kp  need not be strictly decreasing, as in the case

k
when M = S x P   isometrically. More generally, suppose R(x, y)y(0) = 0.

When the projection M —► 5 is a Riemannian submersion, it is not hard to

check that Kp  is constant. Is this still true in general?
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