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Abstract. Let j/ be a commutative Banach algebra. Denote the spectral

radius of an element a in si by p^ (a). An extension oî si is a Banach

algebra AS such that si is algebraically, but not necessarily continuously,

embedded in AS . We view si as a subalgebra of AS . If 3S is an extension

of si then Sp^(a)U{0} Ç Sps/(a)U{0} and thus pm(a) < p^(a), Va e si .
Let us say that si has the spectral extension property if Peg(a) = p^(a)

for all a € si and all extensions 3S of si , that si has the strong spectral

extension property if Sps(a) U {0} = Sp^(a) U {0} for all a & si and all

extensions AS of si , and that si has the multiplicative Hahn-Banach property

if every multiplicative linear functional x on si has a multiplicative linear

extension to every commutative extension ¿ÏS of si .

We give characterizations of these properties for semisimple commutative

Banach algebras.

Introduction

Let sY he a commutative Banach algebra and denote the spectral radius

in sA by p^ . An extension of sA is a Banach algebra 33 such that sY is

algebraically, but not necessarily continuously, embedded in 33 . We view sY

as a subalgebra of 33. If 33 is an extension of sA , then Sp^(a) U {0} ç

Sp^(a) U {0} and thus p^(a) < p^(a) for all a £ sY .

In 1949 I. Kaplansky [4, Theorem 6.2] showed that for the algebra sY of

continuous functions on a compact Hausdorff space, in fact,

(1) Px(a) = pJ/(a),        \/a£sY,

for every commutative extension and hence for every extension 33 of sY .

C. E. Rickart in [8] extended this result to all semisimple, commutative, com-

pletely regular Banach algebras sY and showed that these algebras have the

following stronger property:

Every multiplicative linear functional x  on sY  has a (multi-

(2) plicative linear) extension to every commutative extension 33 of

sY .
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From this ( 1 ) immediately follows. Here the following intermediate property is

also of interest:

(3) Sp^(a)\J{0}=Sp^(a)U{0},

for all a esY and all extensions 33 of sY .

We say that sY has the spectral extension property if it satisfies (1), the

multiplicative Hahn-Banach property if it satisfies (2), and the strong spectral

extension property if it satisfies (3). It is not difficult to see that the multiplicative

Hahn-Banach property implies the strong spectral extension property, that in

turn applies the spectral extension property.

We characterize the semisimple commutative Banach algebras having each

property by a condition similar to, but weaker than, complete regularity of sY ,

and increasing "size" of the Shilov boundary dsY of sY in the entire carrier

space Y(sY ) of sY , in a sense that is clarified below.

As a result, we can give examples of Banach algebras with the spectral exten-

sion property and the multiplicative Hahn-Banach property that are not com-

pletely regular. It also follows that a semisimple infinite-dimensional Banach

algebra with the spectral extension property contains zero divisors.

For an element a £sY , introduce the permanent radius p (a) := inf^, p^(a),

where the infimum is taken over all extensions 33 of sY . Call a subset F of

the carrier space Y(A) of sY a set of uniqueness, if its kernel in sY is trivial;

equivalently, if à = 0 on F => a = 0 for all elements a £ sA . If sY is

semisimple, then every set containing the Shilov boundary is a set of unique-

ness, but in general there may be closed sets of uniqueness that do not contain

the Shilov boundary (see, for example, the disc algebra). Our main results can

be stated as follows:

Theorem 1. For a semisimple commutative Banach algebra sY, the following

are equivalent:

( 1 ) sY has the spectral extension property.

(2) Every closed set of uniqueness F ç T(sY) contains the Shilov boundary.

(3) If F ç Y(sY ) is a closed subset that does not contain the Shilov boundary

of sY , then there exists an element a £sY such that ä = 0 on F and

Pp{a)>0.

(A) Every multiplicative linear functional x in the Shilov boundary of sY

has a (multiplicative, linear) extension to every commutative extension

38 of sY .

Theorem 2. Let sY be a semisimple commutative Banach algebra. Then sY has

the strong spectral extension property if and only ifiit has the spectral extension

property and the Shilov boundary dsY of sA satisfies

â(dsY)l>{0} = â(r(sY))u{0},       ^a£sY.

Theorem 3. Let sY be a semisimple commutative Banach algebra. Then sY

has the multiplicative Hahn-Banach property if and only if it has the spectral
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extension property and the Shilov boundary dsY  is the entire carrier space of

sY.

Proofs

Suppose that sY is a commutative Banach algebra. Denote by T(sY) the

space of all multiplicative linear functionals on sY including the zero func-

tional. Then T(sY) is always a compact Hausdorff space in the topology of

pointwise convergence on sY (sY -topology) even if sY does not have an iden-

tity. Also Y(sY) = T(sY) U {0} , where Y(s/) denotes the carrier space of sY .

For a £ ¿Y let ä e W(T(sY)) denote the Gelfand transform of a. For a

subset F ç T(s>Y) and an element a e sY , let

||â||f:=sup|â(z)| = sup|^(a)|   and    Hall«, := ||fl||f
X€F x£F

Recall that Sp^(a) U {0} = â(T(sY)) U {0}, thus pH^ = p^(a), and that à

is a continuous function vanishing at infinity on the locally compact Hausdorff

space T(sY). Thus \ä\ assumes its maximum on every closed subset F ç

Y(sY ). Recall also that the Shilov boundary dsY of sY is the smallest closed

subset F ç T(sY) such that Pjf^, = ||â||f for all aesY .
In particular, then, for a es¡Y , \ä\ assumes its maximum on dsY . Thus we

can choose a multiplicative linear functional x £ dsY such that \x(a)\ = p^(a)

(see [1,3.1]).

Proposition 1. The following are equivalent for a commutative Banach algebra

sY :

(1) sY has the spectral extension property.

(2) Every submultiplicative norm   \   \   on sY  and every a £ sY  satisfy

p{a)<\\a\\.

(3) Every extension 33  of sY   and every a e sY  satisfy d(Sp^(a)) ç

SP¿g(a)u{0}.

Proof [6]. We will only use the equivalence of ( 1) and (2) and include the short

argument: If 33 is an extension of sY and || || the complete norm on 3S,

then for any element a esY :

P^(an) = ps/(a)"<\\an\\   for all n > 1.   o

Definition 1. For an element a e sY , define the permanent radius pAa) by

p (a) := inf^p3g(a), where the infimum is taken over all extensions 38 of

sY .

Clearly pp(a) < p^(a). From [2, 1.4.2] it follows immediately that p (a) :=

inf ||a||, where the infimum is taken over all submultiplicative norms || || on

sY . We will be interested in elements a £sY that satisfy p (a) > 0 .
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Proposition 2. Let sY be any Banach algebra (not necessarily commutative).

(1) If a £sY is a quasidivisor of zero (ax = x or xa = x for some nonzero

x £sY) then p (a) > 1.

(2) If a, h £ sY  are such that ah = ha  is a quasidivisor of zero then

pp(a)>l/p^(h).
(3) pAa) > dist(C, 0), where C is any connected component of Sp^(a).

Proof.    (1) Obvious.

(2) For every extension 38 of sY we have 1 < p^(ah) < p3s(a)pgg(h) <

p^(a)p^(h).

(3) We may assume that r := dist(C, 0) > 0. Let s < r he arbitrary.

Sp(a) is a compact subset of the complex plane. According to [5, Corollary

1, p. 83] we can find a nonempty open and closed subset F ç Sp(a) such

that dist(A, Sp(a)) < r - s for all X £ F (see also [1]). In particular then,

dist(0, F) > s. Choose disjoint open sets U, V in the plane such that 0 f

U, F ç U, and Sp(a) \ F ç V. Let f(X) be the holomorphic function on

U U V that satisfies Xf(À) = 1 on U and / = 0 on V. By the holomorphic

functional calculus, the element afi[a] = fi[a]a esY is an idempotent. Since F

is nonempty, 1 e Sp(afi[a]), by the Spectral Mapping Theorem, and so af[a] ^

0. It follows that af[a] is a quasidivisor of zero. Notice that p(fi[a]) < 1/s,

again by the Spectral Mapping Theorem. It follows from (2) that p (a) >

1/P(fi[a])>s.   D

Proof of Theorem 1. (1) => (2). Let F ç Y(sA) be a closed set of uniqueness.

Then ||a|| := ||âj|F , Va e sY , defines a submultiplicative norm on sY . Since

sY has the spectral extension property, we have \\â\\F = ||a|| > p^(a) = ||â||oc=,

Vu € Sé . It follows that dsY C F .

(2) =¡> (3). Notice first that we have pp(a) = psi(a) > 0 for every nonzero

a £ sY , since sY has the spectral extension property and is semisimple.

Now let F ç Y(sY) he a closed subset that does not contain the Shilov

boundary dsY of sY . Then F is not a set of uniqueness, and so there exists

a nonzero element a £sY such that à = 0 on F .

(3) =^ (4). Let 33 he a commutative extension of sY . Since pointwise

convergence on 33 implies pointwise convergence on sY , the restriction map:

4>:X£ T(38)^xiazT(jY)

is continuous, and hence 4>(Y(33)) ç Y(sY) is compact and therefore closed.

Then F := 4>(Y(33)) n T(sY) is a closed subset of T(sY) and we wish to show

that dsY ç F . Notice that for all a £ sY ,

psg(a) = \Ya\\V[ß) = \\a\\F,

since (f)(T(33))\F consists only of functionals x on ¿% for which â(/) = 0,

Va £ sY . Assume now that F does not contain the Shilov boundary of sY .

Then we can choose an element a £sY such that pp(a) > 0 and ä = 0 on F .
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But then we have the contradiction:

Pp(a)<p¿g(a) = Hall, — 0.

(4) => ( 1 ). Let 33 be an extension of sY and a £ sY . We wish to show

that p@(a) — Ptf(a). We may assume that 38 is commutative (otherwise

replace 33 with a maximal commutative subalgebra containing sY ). Choose

a multiplicative linear functional x £ dsY such that \x(a)\ = P&(A) ■ Then x

extends to a multiplicative linear functional on 38 and therefore

Pj/{a) = \x(a)\ <Pcg(a) <p^(a).   D

Remark. G. Shilov has shown in [9] that every x € dsY has an extension

to every isometric extension 33 of sY . The same argument shows that all

X £ dsY extend to 33 whenever p¿g(a) = p^(a),   Ma£sY (see also [3]).

Corollary 1. A semisimple, infinite-dimensional, commutative Banach algebra

sY , that has the spectral extension property, contains zero divisors.

Proof. If F ç dsY is a proper closed subset, then by Theorem 1 we can choose

an element a e sY such that à — 0 on F. Recall now [7, 3.3.3] that the

Shilov boundary dsY is an infinite Hausdorff space. We may therefore choose

two disjoint (relatively) open subsets U, V ç dsY . Let F := dsY \U, K :=

dsY \ V. Choose nonzero elements a, b £ sY such that â = 0 on F and

b = 0 on K. Then ab = ab = 0 on all of dsY and hence on all of T(sY). By

semisimplicity of sY it follows that ab = 0.   D

Lemma 1. Assume that sY is a semisimple commutative Banach algebra. Let

33 = W0(dsY) be the algebra of all continuous complex valued functions on the

Shilov boundary dsY of sY that vanish at infinity. Then 33 is an extension of

sY , and if x is a nonzero multiplicative linear functional on sY that extends to

38, then x e dsY .

Proof. By semisimplicity of sY the map a e sY —► â,ds/ £33 is a 1-1 ho-

momorphism. Thus the C*-algebra 33 = fêQ(dsY) is an extension of sY .

The Shilov boundary dsY is a locally compact Hausdorff space and it is well

known that every nonzero multiplicative linear functional p on 33 has the

form p(f) = f(x) Vf £ 33 , for some x £ àsY . In particular, its restriction

to sY satisfies

pw(a) = p(a) = a(x) = x(a) ■

Thus pw = x £ dsY .    D

Proof of Theorem 2. Assume first that sY has the strong spectral extension

property. Then sY has the spectral extension property. Also, by Lemma 1,

the algebra 33 = W0(d¿Y) of all continuous complex valued functions on the

Shilov boundary dsY of sY that vanish at infinity, is an extension of sY .

Every element f £ 38 satisfies Sp^(fi) U {0} = f(dsY) U {0}. Thus every

element a £sY satisfies

a(dsY) U {0} = Sp^(a) U {0} = SpAa) U {0} = â(T(sY)) u {0}.
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Now assume conversely that sY has the spectral extension property and satisfies

à(dsY)\J{0} = â(T(jY))U{0} , Va e sY . Let 33 he any commutative extension

of sY and a £ sY . If X e Sp^(a) is nonzero, there exists a multiplicative linear

functional x £ H*^) such that X = â(x). By assumption x can be chosen

to be in the Shilov boundary dsY of sY . Since sY has the spectral extension

property, x extends to 33 , by Theorem 1. It follows that X = â(x) £ Sp^(a).

This shows that Sp^(a) U {0} ç Sp^(a) U {0} and hence that equality holds.

It follows that this is true for any, not necessarily commutative, extension 33

of sY .   D

Proof of Theorem 3.   (2) =*■ (1). This follows immediately from Theorem 1.

(1) => (2). Assume that sY has the multiplicative Hahn-Banach property.

Then we have dsY = Y(sY ) in view of Lemma 1. Now let 33 be an extension of

sY and a e sY . We wish to show that p^(a) = p^(a). Choose a multiplicative

linear functional x on sY suchthat \x(a)\ = psi(a). Then x has an extension

to 33 and consequently pm(a) > \x(A)\ — P^(A) ■   n

Corollary 2 [Rickart, 8]. Every semisimple, completely regular, commutative Ba-

nach algebra sY has the multiplicative Hahn-Banach property.

Proof. Clearly complete regularity of sY implies that dsY = T(sY). Suppose

now that F ç Y(sY) is any proper closed subset. Then there exists a e sY

such that â = 0 on F and à = 1 on some nonvoid open subset U ç T(sY).

Furthermore, sY contains a nonzero element b such that b = 0 outside U.

But then ab = ab = b everywhere and hence ab = b by semisimplicity of sY .

It follows that pp(a) > 1.   D

Example 1 (Bruce Barnes, personal communication). The following Banach al-

gebra is semisimple and has the multiplicative Hahn-Banach property without

being completely regular. Let D := {z : \z\ < 1} ç C he the open unit disc,

D the closed unit disc, and O := D x [0, 1]. Let sY he the algebra of all

continuous functions on O that are holomorphic on D x {0} endowed with

the uniform norm. Clearly, sY is semisimple. Notice that psi(fi) = ll/"!^,

V/ £ sY . It can be shown that the carrier space T(sY) of sY can be identi-

fied with the set O in such a way that for each element / e sY , the Gelfand

transform / coincides with the function / on <P.

Clearly sY does not separate points from closed subsets in D x {0}. This

shows that sY is not completely regular. Notice that sY contains all continuous

functions on O that vanish on D x {0}. This shows that dsY = T(sY).

Now let F ç O be a proper closed subset. Then sY contains a function /

that vanishes on F but is identically 1 on an open subset U ç <ï>. Also, sY

contains a nonzero function g with support in U. Then fig = g and this

shows that p (f) > 1 (Proposition 1). By Theorem 1, sY has the spectral ex-

tension property. Now it follows from Theorem 3 that sY has the multiplicative

Hahn-Banach property.



THE SPECTRAL EXTENSION PROPERTY 861

Example 2. Suppose that 0 < r < R and let sY be the algebra of all functions

that are continuous on the closed disc B(0, R) and holomorphic on the open

disc B(0, r), endowed with the uniform norm. It can be shown that the struc-

ture space Y(sY) can be identified with the disc B(0,R) in such a way that

the Gelfand transforms / coincide with the functions fi £sY .

The Shilov boundary dsY is the annulus {X\r < \X\ < R}. The function

f(X) := X does not take all its values on the Shilov boundary, and so sY does

not have the strong spectral extension property. However sY contains all con-

tinuous functions on B(0, R) that vanish on B(0, r). Using Theorem 1, it

can be seen, as in the previous example, that sY has the spectral extension

property.

The author does not know of an example of a commutative semisimple Ba-

nach algebra with the strong spectral extension property for which the multi-

plicative Hahn-Banach property fails. Question: For a commutative semisimple

Banach algebra sY does the strong spectral extension property imply the mul-

tiplicative Hahn-Banach property?
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