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ANnx/i MATRIX OF LINEAR MAPS OF A C*-ALGEBRA

CHING-YUN SUEN

(Communicated by Paul S. Muhly)

Abstract. Every positive nxn matrix of linear functionals on a C*-algebra is

completely positive. [3, Theorem 2.1] can be extended to the case of a bounded

nxn matrix of linear functionals.

1. Introduction

Let Mn denote the C* -algebra of complex nxn matrices generated as a

linear space by the matrix units Etj (i, j = 1,2, ... , n) and let B(H) be the

algebra of all bounded linear operators on a Hubert space H. Let A and B be

C*-algebras and let L: A —> B be a bounded linear map, the map 7 is called

positive provided that 7(a) is positive whenever a is positive. The map 7 is

called completely positive if L®In: A®Mn -> B®Mn defined by L®In(a®b) =

L(a) ® b is positive for all n . 7 is completely bounded if sup^ ||7 ® In\\ is

finite, and we let ||£||cb = supn ||£ <8> In\\. We define L*(a) — 7(a)*. Given

S ç B(H), we let S' denote its commutant. An n x n matrix (fA of linear

functionals on a C*-algebra A is positive (or an «-positive linear functional

on A [3, p. 1]) if (fjj^jj)) is positive whenever (a¡A is a positive element in

A ® Mn . The paper [3] does not show that an «-positive linear functional on a

C*-algebra is completely positive. In this paper we prove the fact, generalize [3,

Theorem 2.1], and develop an n x n matrix of linear maps from a C*-algebra

to 5(77).

2. A positive nxn matrix of linear functionals

We will apply the following well-known theorem [7, Corollary 2.3] later in

this paper.

Theorem 2.1. Let F be a linear map from a C*-algebra A to Mn and let the

functional f: A®Mn —> C be defined by f(a®E¡) = (F(a))iJ. If f is positive,

then F is completely positive.

The following theorem shows that positivity implies complete positivity.
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Theorem 2.2. Let F = (f¡A: A®Mn—> Mn(C) be a positive nxn matrix of

linear functionals on A, then F is completely positive.

Proof. Define the map 7: Mn <g> (Mn(A)) -» C by

L((ak,)®Elj) = (F((akl)))ij = fu(aiJ).

By [10, p. 193] we know that every positive element of Mn ® (Mn(A)) is a sum

of positive elements of the form (a*aA . Let (a* a A be an « x n positive

matrix in Mn <g> (Mn(A)), then

7((fl*fl.)) = 7
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Thus 7 is positive. By Theorem 2.1 F is completely positive.

The following theorem generalizes [3, Theorem 2.1].

Theorem 2.3. Let F - (f¡A: A <g> Mn —► Mn(C)  be an nxn  matrix of lin-

ear functions on A  as defined by F((a¡j)) (fu(aij)) ■   V F  is bounded,
then there is a representation n of A on a Hubert space K, and 2« vectors

xx, ... , xn,yx, ... ,yn in K such that {xx, ... , yn} is a generating set for

n (A) on K,

flJ(a) = (7t(a)y],xl)   and   ||P||cb = max{||*,||2, ||v,||2} .

Proof. From [6] F is completely bounded. Let D be the C*-algebra of diag-

onal matrices in Mn(C), then F is T>-bihomomorphism (or 7)-bimodule) [9,

Definition 2.1]. By [9, Theorem 2.5] there exist 7)-bimodule completely posi-

tive maps (f>i:A<S>Mn-* Mn(C), with ||0-|| b = ||P||cb   (i = 1, 2) such that the
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map

(f*    l)^®M2n^M2n(C)

is completely positive. Hence it is a positive 2n x 2n matrix of linear functions

on A . By [3, Theorem 2.1], there exist 2« vectors xx, ... ,yn in K such that

fu(a) = (n(a)yj, x¡), f*j(a) = (n(a)xi, vy)   (/,;'= 1, ... , n) and ||F||cb =

max;.{||x;||2} = maxi.{||v/||2}.

In Theorem 2.3, (f¡j) has the representation:

n

Corollary 2.4. Let V and W be operators from CB to K® ■■■ @K defined by

Ve¡   =   (0,0,..., *,,..., 0)   and   We¡   =   (0, 0, ... , yf, ... , 0),   then

(fu)((au)) = V*7i®In((aij)W.

Corollary 2.5.   ||(/¡ )||cb < 1  if and only if there is a representation n of A on

a Hubert space K, and 2n vectors xx, ... ,xn,yx, ... ,yn in K such that

fu(a) - (n(a)yj, x¡)   with \\xt\\ < 1 and \\y¡\\ < 1 (i, j = 1, ... , n).

Proof. "=^" By Theorem 2.3, we have ftj(a) = (n(a)yj, x¡) and max^HxJI2} =

max.{||y,.||2} = ||(y;..)||cb < 1. Hence \\xt\\ < 1 and ||y,.|| < 1   (/ - 1,..., n).
ii ,_« We define the map

In

V: C2"-+ K@^>eK

byVei = (0,...,x¡,...,0) and Ven+l = (0, ... , v,, ... , 0)
ith slot (n+j)th slot

for i — I,... , n. Then the map

í {tña\Xj ' x,\\ Íí1a^ ' Xi\\ )    = v*« • wy
\((n(a)xi,yj))    ((7i(a)yj,yi)))2n><2n 2"y

is completely positive.   Hence the completely bounded norm of the map is

max{||x;||2, ||y,||2} < 1 . By [2], we have \\(fu)\\cb < 1.

From Corollary 2.5, we obtain the property of Schur Product [4, pp. 110—

112]:

Corollary 2.6. Let A = (a¡J) and SA: Mn(C) -* Mn(C) be defined by SA((bu)) =

(ctjjbij).  \\SA ||cb < 1 iff there exist 2n vectors xx, ... , xn,yx, ... ,yn such that

A = ({yj, xA) with ||x,|| < 1, ||y;|| < 1 and \\SJcb = max,{||x;||2, ||y,||2}.

Proof. Since SA is T)-bimodule, we have the corollary from Corollary 2.5.

In general, we consider an n x n matrix of linear maps from a C*-algebra

to B(H).

Proposition 2.7. If the map (ftj): A%Mn -* B(H)®Mn defined by (fij)((aij)) =

(fi(aij))  Is completely positive, then there is a representation  n  of A  on a
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Hubert space K, an isometry V: H -* K and an operator Ttj £ n(A)' such

that [ti(A)VH] is dense in K and fj(-) = V*Tfjn(-)V with (Ttj) > 0.

Proof. It is not difficult to see that the map

y1    yJ \:A®M2^ B(H) ® M2

is completely positive.   By [7, Lemma 2.3], we have that fu  is completely

positive,  f* = fjt and (fu + /¿,)/2 - (±Rezfu) is completely positive for

(1,7 = 1, 2,..., n, and \z\ - 1).  Hence j(E"=i fu) ~ (±Rezf¡j) is com-
pletely positive for i, j — 1, 2, ... , n .

By [5, Theorem 2.10], there is a representation n of A on a Hilbert space

K, an isometry V: H —► K and an operator Tt, £ n(A)' such that [n(A)VH]

is dense in K and

fiJ(-) = V*Tij7t(-)V.

By [5, Proposition 2.6], we have that (T¡A > 0.
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