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Abstract. This paper investigates the properties of locally //-closed spaces

with regard to extensions, subspaces, and functions. We solve the //-closed

extension remainder problem by showing that a space is locally //-closed if

and only if it has a 0-closed remainder in some //-closed extension. In fact,

an //-closed space is Urysohn iff every //-closed subspace is ö-closed. We

solve the locally //-closed subspace problem by giving a necessary and sufficient

condition for a subspace of a locally //-closed space to be locally //-closed. In

particular, an open subspace of a locally //-closed space is locally //-closed if

and only if its boundary is a ö-closed subspace of its closure. An //-closed

space is shown to be compact if and only if every open subset is locally H-

closed. A retract of a locally //-closed space is locally //-closed.

1. Introduction

Recall that a space is said to be H-closed iff it is a closed subspace of every

Hausdorff embedding space. A space is locally H-closed, or LHC, iff every point

has an 77-closed nhood. Several open questions regarding LHC spaces will be

solved in this paper.

In his 1970 study of LHC spaces, Porter noticed that the LHC property,

unlike local compactness, is not hereditary on open subspaces. He also asked

for a necessary and sufficient condition for a subspace of an LHC space to be

LHC. In §3, we show that a subspace of an LHC space is LHC iff its closure less

the subspace is a ö-closed subset of its closure, and its nowhere dense points

are LHC. For open subsets, we have a much more concise answer. An open

subset of an LHC space is LHC iff its boundary is a ö-closed subspace of its

closure. We also show that an 77-closed space is compact iff every open subset

is LHC, in contrast to the famous theorem of M. H. Stone: "An 77-closed space

is compact iff every closed subspace is 7i-closed."

How do  77-closed extensions of LHC spaces behave?   In 1950, Obreanu

showed that LHC spaces have one-point 77-closed extensions, and also proved

the existence of a projective maximum and a projective minimum for such ex-
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tensions. In 1973 and 1975, Porter and Votaw showed that a space is LHC iff

its remainder in the Fomin extension is compact. In 1986, Tikoo investigated

remainders of 77-closed extensions, and, noticing that locally compact spaces

always have compactifications with compact remainders, asked if locally H-

closed spaces are characterized by having 77-closed extensions with //-closed

remainders. In §4, we show that the answer to Tikoo's question is negative,

but, that a space is LHC iff any 77-closed extension has a ö-closed remain-

der. In resolving this question, it was necessary to examine 77-closed spaces in

which every //-closed subspace is ö-closed. Such spaces were first considered

by Velichko in 1965, and related questions have been recently addressed by

Porter and Tikoo. We show that an //-closed space has the property that every

//-closed subspace is ö-closed iff the space is Urysohn.

We study retract questions in §5, and show that a retract of an LHC space is

LHC. In particular, the rationals are not a retract of any LHC space.

2. Preliminaries

Our primary source for terminology and results is the treatise by Porter and

Woods [12]. Other results can be found in Engelking [3]. All spaces are Haus-

dorff, and all functions are continuous.

Dix H. Pettey has suggested that an open filterbase be called quasi-free iff

none of its members has an //-closed closure. Then, we have the following

filterbase characterization of LHC spaces.

2.1. Proposition. A space is LHC iff every quasi-free filterbase is contained in

some free open ultrafilter.

Let X be a space, and B a subset. In [15], x £ X is defined to be a 8-limit

point of B iff every closed nhood of x intersects B . B is said to be 8-closed

iff it contains all of its ö-limit points. It is easy to show that the intersection

of any collection of ö-closed subspaces is ö-closed. Dikranjan and Giuli have

show in [2] that the only subspaces that are Ö-closed in all embedding spaces

are the compact subspaces.

Let / : X —> Y, where X and Y are arbitrary spaces and / is not necessar-

ily continuous. / is said to be 8-continuous iff for any x £ X and any nhood

V of f(x), there exists a nhood U of x such that /( ClXU) ç Cl YV .

A subset is said to be regular open iff it is the interior of its closure. A

subset is regular closed iff its complement is regular open. A space is said to be

semiregular iff it has a basis of regular open subsets. A space for which any two

points have disjoint closed nhoods is a Urysohn space. A space for which there

is no coarser Hausdorff topology is called minimal Hausdorff.

Every //-closed space has a coarser minimal Hausdorff topology. One of the

classical problems in //-closed spaces is to show that the rationals do not contain

a coarser minimal Hausdorff topology, and, although the original question has

been answered by several authors, this line of inquiry continues today in studies

of Katëtov spaces such as [9]. A space is said to be a Katëtov space if it has a
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coarser minimal Hausdorff topology. The search for an internal characterization

of Katëtov spaces is an open question. LHC spaces are Katétov spaces.

The next example of a noncompact, minimal Hausdorff space is presented

by Herrlich in [4].

2.2. Example. Let X be the coarsest //-closed topology on the unit interval

containing both the compact topology and the rationals. Let Y be the space

resulting from identifying the free union of two copies of X at irrational points.

Then F is a noncompact minimal Hausdorff space, which can be thought of as

two outer layers of rationals surrounding one inner layer of irrationals.

The //-closed equivalent of the Stone-Cech compactification, called the

Katëtov extension, and denoted by kX , can be realized for any Hausdorff space

by fixing all the free open ultrafilters.

3. Subspaces

When is a subspace of an LHC space LHC? Porter makes the first assault

on the problem in [7], when he shows that an open subset of even an H-

closed space need not be LHC. So, we will characterize LHC open subspaces

of //-closed spaces. He also shows that each LHC subspace of an arbitrary

space is the intersection of an open set and a closed set, and observes that

this is not a sufficient condition for a subspace to be LHC. We will improve

upon this result, and give a partial converse. Porter asks for a necessary and

sufficient condition for a subspace of an LHC space to be LHC. We will give

such a condition, and show that, for some important special cases, the LHC

subspace problem has a succinct answer.

Let us first consider the problem of determining when an open subspace of

an //-closed space is LHC. If we recall that every space is open in its //-closed

Katétov extension, we will perceive the need for a strong condition for an open

subspace to be LHC.

3.1. Lemma. Let M be a subspace of the space X.

(1) If X\M is 8-closedin X, then ClxM\M is 8-closed in Clx M.

(2) If M is open and Clx M\ M = Bdx M is 8-closed in Clx M, then

X \M is 8-closed in X.

(3) If M is LHC, then ClxM\M is 8-closedin ClxM.

Proof. The proof is routine and is left to the reader.

We can now solve the question of when an open subspace of an //-closed

space is LHC.

3.2. Proposition. Let X be H-closed and B an open subset. B is LHC iff

X\B is a 8-closed subset of X iff BdB is a 8-closed subset of Clx B .

Proof. We will show that if B is LHC, then X \ B is a ö-closed subset of X,

and leave the rest of the proof to the reader. Let b be an element of the LHC
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space B. Since B is LHC, there exists some //-closed nhood of b contained

in B , and this closed nhood is disjoint from X\B, which is therefore ö-closed.

We conclude our study of LHC open subspaces of //-closed spaces with the

next result, which contrasts with the famous theorem of M. H. Stone, who

proved in [13] that an //-closed space is compact if and only if every closed

subspace is //-closed. We say that a space is rim 8-closed iff it has a basis of

open sets whose boundaries are ö-closed subsets of their closures. Recall that

Pettey showed in [6] that there exists a noncompact example of an //-closed

space that has a basis of open sets whose boundaries are //-closed.

3.3. Theorem. An H-closed space X is compact iff it is rim 8-closed iff every

open subset is LHC iff it has an open base of LHC sets.

Proof. In view of Proposition 3.2, we only need show that an //-closed space is

compact iff every basic open subset is LHC. Towards that goal, we note that one

direction is easy, since a compact space has a basis of open sets with compact

closures. So, we will assume that for some base, every basic open subset is LHC,

and show that X is compact.

Let B be an open subset of X. Then, let {Oa,a £ A} be a collection of

basic open sets with boundaries that are ö-closed subsets of their closures, such

that B = \Ja€A Oa . By Lemma 3.1, we know that X\Oa is a ö-closed subset of

X for each a, and the intersection of an arbitrary collection of ö-closed subsets

is a ö-closed subset. Therefore, X \ B = f]a€A{X \Oa} is a ö-closed subset of

X. By Proposition 3.2, B is LHC, and every open subset of the //-closed space

X is LHC; thus every closed subset is ö-closed, which is equivalent to saying

that the space is regular. But a regular, //-closed space is compact. Thus, the

proof is complete.

3.4. Remark. Let X be the space obtained from the compact unit interval by

letting the sequence {l/n\n an integer} be closed. Then X is an example of

a noncompact //-closed space in which every closed subset is LHC.

Having resolved the question of open LHC subspaces of //-closed spaces, we

will now study the LHC subspace problem for LHC spaces.

3.5. Example. Example 2.2 is an LHC space in which the outer layers of ratio-

nals is an open subset that is not LHC, and the inner layer of irrationals is a

closed subset which is not LHC.

We will tackle the problem of characterizing LHC subspaces of LHC spaces

by working on specific cases first. We will first develop a useful lemma, and

then consider a class of subspaces that includes the open subspaces.

3.6. Lemma. Let X be LHC and B a subset. Then ClxB is LHC if there exists

some H-closed extension of X, say hX, such that ClhxB is an H-closed subset

of hX.

Proof. Suppose that there exists some //-closed extension of X, say hX,

such that ClhxB is an //-closed subset of hX.  Then, if aX is the projec-
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tive minimum one-point //-closed extension of X, there exists a continuous

function / : hX -> aX such that /( Cl hxB) = Cl aXB, and Cl aXB is the

continuous image of an //-closed space and, therefore, must itself be //-closed.

But Cl aXB is then Cl XB or a one-point //-closed extension of Cl xB, so Cl xB

must be LHC.

3.7. Theorem. Let X be LHC and B be a subset whose closure is LHC. B is

LHC iff Clx B\B is a 8-closed subset of Gx B .

Proof. First, suppose that B is LHC, and let b £ B . Then, there exists an H-

closed nhood of b which is contained in B, which is disjoint from Cl XB \ B .

Therefore, Cl XB \ B is a ö-closed subset of Cl XB .

To get the other direction, let b £ B . Then, there is an open set M of the

space Cl XB such that b £ M and the closure of M in Cl XB is //-closed.

There also exists an open set N of the space Cl x B such that b £ N, and the

closure of N in the space Cl XB misses Cl XB \ B . Let U = M n N. Then

b £ U, and the closure of U in Cl XB is //-closed and contained in B . Thus,

B is LHC.

The hypothesis in Theorem 3.7 includes what can be thought of as "trapped"

subspaces, i.e., subspaces with nonempty interior that are contained in the clo-

sure of their interior. We can now answer the LHC subspace question for open

subsets.

3.8. Theorem. An open subset of an LHC space is LHC iff its boundary is a

8-closed subset of its closure iff its complement is 8-closed.

Proof. Let X be LHC, and B any open subset of X. Since X is LHC, it is

open in any //-closed extension, so B is also open in any //-closed extension of

X, and its closure in that //-closed extension is //-closed. Thus, from Lemma

3.6, ClxB is LHC. Since B is open, Cl XB\B = Bd B . Then, our proposition

follows immediately from Theorem 3.7.

Closed subsets of LHC spaces are not necessarily LHC. However, the most

important class of closed subspaces does inherit the LHC property.

3.9. Proposition. Let X be a LHC space. Then every regular closed subset is

LHC.

Proof. Let B be a regular closed subset of the LHC space X. Then Int XB is

nonempty. If aX is a one-point //-closed extension of X, then Cl aX Int XB

is a one-point //-closed extension of B . Therefore, B is LHC.

We can now state the general solution to the LHC subspace problem. Recall

that, for BCX, the nowhere dense points of B are the elements of B that

are not elements of Cl x Int XB .

3.10. Theorem. Let X be LHC and B cX. Then B is LHC iff.

( 1 )   Clx B\B is a 8-closed subset of Clz B, and
(2) the set of nowhere dense points of B is LHC.
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Proof. Suppose X is LHC, and conditions (1) and (2) are met. B is the

union of the set of its LHC nowhere dense points and B n Clx Int XB =

ClBlntxB. But ClxlntxB is regular closed, thus LHC by Proposition 3.9,

and an argument similar to that in the second part of Theorem 3.7 shows that

B n Clx Int XB is LHC. Since B is the union of two LHC spaces, it must be

LHC.
Now suppose B is LHC. First, we see that condition (1) follows from the

third part of Lemma 3.1. Then, we complete the proof by noticing that the

set of nowhere dense points, B\ Int B Cl B Int XB, is regular closed in the LHC

subspace B, thus, from Proposition 3.9, is itself LHC, and condition (2) is

satisfied.

3.11. Remark. Our proof of Theorem 3.10 also shows that, in a LHC space, a

closed LHC subspace is the disjoint union of a regular closed LHC subset and a

nowhere dense LHC subset. In [12], Porter and Woods use p-maps to show that

in an //-closed space, an //-closed subspace is the union of a regular closed

//-closed subset and a nowhere dense //-closed subset.

3.12. Remark. In [7], Porter shows that if B is a LHC subspace of the LHC

space X, then ClXB\B is closed. We have improved on this result by showing

that, if B is LHC, then Cl XB \B is actually a ö-closed subset. In addition,

we have established a partial converse by showing that if ClxB is LHC and

Cl XB \ B is a ö-closed subset of Cl XB , then B is LHC.

4. Extensions

The primary goal of this section is to characterize LH C spaces by their

remainders in //-closed extensions. The first result follows immediately from

our characterization of open LHC subspaces of //-closed spaces and the fact

that an LHC space is open in every embedding subspace.

4.1. Theorem. A space is LHC iff the remainder is 8-closed in every (some) H-

closed extension. A dense subspace of an H-closed space is LHC iff its complement

is 8-closed.

4.2. Remark. There is a subtle stumbling block in the study of remainders of

//-closed extensions. Locally compact spaces have closed remainders in their

compactifications, and, due to the nature of compact spaces, local properties

such as being closed become global properties such as compactness. For LHC

spaces, we see that the distinguishing characteristic is a local property.

In [14], Tikoo asks if only LHC spaces have the property that each //-closed

extension has an //-closed remainder. We answer this question by constructing

a space that is not LHC but that has an //-closed extension with an //-closed

remainder. We find an //-closed space which has a subspace that is //-closed

but not ö-closed, and then manuever a bit, using a folklore technique, so that

the subspace becomes nowhere dense in a larger //-closed space. We then

revisit the idea of an //-closed space for which some //-closed subspace is not
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ö-closed, but, for now, we assume that such examples exist (notice that Example

2.2 is such a space).

4.3. Theorem. There exists a space that is not LHC and has an H-closed exten-

sion with H-closed remainder.

Proof. Let X be an //-closed space such that 5c I is //-closed but not

ö-closed. Let / be the compact unit interval. Then X x I is an //-closed

extension of X x I \B x {0}, and B x {0} is an //-closed remainder. Let

p £ X be a point such that every closed nhood of {p} meets B . Such a point

exists since B is not a ö-closed subset of X. Then, every closed nhood of

(p, 0) meets B x {0}, which is therefore not ö-closed; hence, by Theorem 4.1,

its complement is not LHC.

Thus, the answer to Tikoo's question is negative. But we have encountered

the need to know more about //-closed spaces in which some subspace is H-

closed but not ö-closed. Porter and Tikoo show in [9] that there exists a Ö-

closed subset of an //-closed space which is not //-closed, and there exists

an //-closed subspace of an //-closed space which is not the ö-closure of any

subset in the space. These questions and our own investigation prompted the

following result, which extends a theorem of Velichko in [15].

4.4. Proposition. Let X be an H-closed space. Every H-closed subspace is

8-closed iff X is Urysohn.

Proof. Let x and y be any two points in X, and let Nx be any nhood of x

whose closure misses y . Then Cl A^ is //-closed, thus ö-closed by hypothesis,

so there exists some closed nhood N such that Cl Nxf) N = 0 . Therefore,

X is Urysohn.

The other direction follows from a result of Velichko in [15].

4.5. Remark. Porter [8] asks if there exists an noncompact minimal Hausdorff

space in which every minimal Hausdorff subspace is ö-closed. Example 2.2 is

such a space. The related question of whether or not there exists a noncompact

//-closed space in which all //-closed subsets are minimal Hausdorff is open.

5. Retracts

Retracts of any space are closed, and local compactness is hereditary on closed

subspaces, so it is easy to see that a retract of a locally compact space must be

locally compact. The retract question for //-closed spaces is also easy. The

continuous image of an //-closed space is //-closed, so a retract of an H-

closed space must be //-closed. But closed LHC subspaces need not be LHC,

and the continuous image of an LHC space need not be LHC. Therefore, the

next result was unexpected.

5.1. Theorem. A retract of a LHC space is LHC.

Proof. Let B be a retract of the LHC space X, and let / : X -* B be a

continuous function that is the identity map on B.  Let b £ B, and Nb be
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a nhood of b in B, i.e., there exists some Mb, open in X such that Nb —

Mb n B . Since X is LHC, there exists some nhood Ob , open in X, such that

Cl xOb is //-closed, and Ob ç Mb. Notice that Ob n B is a nhood of 6 in B .

But £ = f(b) £ f(Ob n B) c /( Clx0è), and this last term is //-closed. But

f(Ob C\B) = id(Ob n 5) = 0¿ n B . Thus, b £ObnB ç f( ClxOb) C B , and
Clfi(0ftn5) is //-closed. Since every element of 5 has an //-closed nhood in

B , B is LHC.

5.2. Remark. The above result holds true even for ö-continuous functions. If

X is a space and 5 is a subspace, we say that B is a 8-retract of X iff there

exists a ö-continuous function f : X -* B that agrees with the identity function

on B . A slight variation of Theorem 5.1 shows that ö-retracts of LHC spaces

are LHC.

5.3. Corollary. The rationals are not a retract of any LHC space.

5.4. Remark. Retracts of LHC spaces are LHC, thus Katétov. But, Porter and

Tikoo show in [9] that Katétov spaces have a compact pre-image, and are the

remainder of an //-closed extension of some discrete space. So, retracts of

LHC spaces are particularly well behaved.

5.5. Remark. How can the retracts of an LHC space be characterized? Cer-

tainly, they are closed and LHC. But not every closed LHC subspace of an LHC

space is a retract of the space. A finite subset of a connected Hausdorff space

is closed and LHC, but if it contains more than one point, then it cannot be a

retract of the space.
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