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WEAK COMPACTNESS IN Ll(p,X)

A. ÜLGER

(Communicated by William J. Davis)

Abstract. Let (Q.,l,ß) be a probability space, X a Banach space, and

L (fi, X) the Banach space of Bochner integrable functions f: Í2 —> X . Let

W = {/ € Ll(p, X) : for a.e. w in Í2, ||/(w)|| < 1} . In this paper we

characterize the rwc (relatively weakly compact) subsets of L (ß, X). The

main results are as follows:

Theorem A. A subset H of W is rwc iff given any sequence (/„) in H there

exists a sequence (/„), with fn € Co(/n , fn+l, ...) such that, for a.e. a> in

Í2 , the sequence (/„(«)) converges weakly in X.

Theorem B. A subset A of L (ß, X) is rwc iff given any e > 0 there exist an

integer N and a rwc subset H of NW suchthat A Ç H + eB{0), where B(0)

is the unit ball of L [ß, X).

Introduction

Let (Q., X, p) be a probability space, X an arbitrary Banach space, and

Lx(p, X) the Banach space of Bochner integrable functions /: Q —» X equip-

ped with its usual norm [6, p. 50]. The problem of characterizing the rwc

(relatively weakly compact) subsets of the space L (p, X) is a well-known long-

standing open problem, see Chapter IV of [6] for a review of known results about

this problem up to 1977 and [1, 2, 3, 7, 9, 12] for some more recent results. In

this note we present a characterization of the rwc subsets of the space L (p, X).

The characterization is obtained in two steps. In the first step we characterize

the rwc subsets of the set W = {/ e Ll (p, X) : for a.e. coinQ, ||/(w)|| < 1}.

This result is as follows: A subset H of W is rwc iff given any sequence (fn)

in H there exists a sequence (fn) with fn £ Co(fn, fn+x, ■■■) such that, for

a.e. co in £2, the sequence (fn(co)) converges weakly in X. In the second step

we show that a subset A of L (p, X) is rwc iff it is a small perturbation of a

rwc subset of NW for some integer N. More precisely, we prove the following

result: A subset A of the space L (p, X) is rwc iff given any e > 0 there exist
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an integer N and a rwc subset of H of NW such that A ç H + eB(0), where

B(0) is the unit ball of L (p, X). This paper also contains several corollaries of

these results. The main ingredients of the proofs are an ad hoc lemma (Lemma

1) and the results established by M. Talagrand in his beautiful paper [12]. In

§ 1 we have collected needed notation and preliminary results. The main results

are in §2.

1. Notation and preliminaries

Our notation and terminology are quite standard and are in general those of

[6]. All the Banach spaces used in this paper are taken to be defined on the field

of real numbers R. For a Banach space X, by X* we denote its continuous

dual and by (x, x*) the natural duality between X and X*. For a subset A

of X, by Co(^4) we denote the convex hull of A. By B(0) we denote the

closed unit ball of the Banach space under consideration. The context avoids

misunderstanding. Throughout the paper (Cl,¿Z, p) is an arbitrary probability

space, and X an arbitrary Banach space. The space of Bochner integrable

functions /: Í2 —> X is denoted by L (p, X). When X = R, we write L (p)

instead of L (p, R). The space L (p, X) is equipped with its usual norm

11/11 = /n ||/(u))||fi¡u(íu). For an integer N we put W(N) = {f £ Ll(p, X):
for a.e. © in Ü, ||/*(fc>)|| < N} . When 7Y = 1, the set W(l) is simply denoted

by W. Observe that W(N) = NW. For a subset H of W and to in fl we

put H(co) - {f(co): f £ H} . Strictly speaking, H(co) is not well defined since

the elements of H are not single functions but a class of functions. To make

the definition of H(co) precise, one can introduce a lifting p of L°°(p), and

define p(f) as in [8, p. 212] or [10, p. 76], and put H(co) = {p(f)(to): f £ H} .
However, not to overcomplicate the notations, we do not introduce a lifting but

deal with the elements of W as if they are strongly measurable bounded single

functions. Finally, we recall the following result [4, p. 227].

Lemma (A. Grothendieck). A subset A of a Banach space Y is rwc iff given

any e > 0 there exists an rwc set H£ such that A ç H£ + eB(0).

2. Weakly compact subsets of Ll(p, X)

A key result of this paper is the following lemma, which has turned out to be

quite useful in connection with Talagrand's results in [12].

Lemma 1. Let A be a bounded subset of a Banach space Y. Then A is

rwc iff given any sequence (yn) in A, there exists a sequence (yn) with yn £

C°(y„ > y„+\ » ■ • • ) that converges weakly.

Proof. Assume A is rwc. Then, any sequence (yn ) in A has a weakly conver-

gent subsequence (yn ). Put yk = yn . Then clearly yk £ Co(yk, yk+x, ...),

and the sequence (yk) converges weakly. To prove the converse, it is enough,

by James's Theorem [11], to show that every nontrivial functional v* in Y* at-

tains its maximum on Co(A). To this end, let y* be a nontrivial functional in
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Y* and ß = supy€-^{A){y, y*). Since ß = supy<EA(y, y*) as well, there exists

a sequence (yn) in .4 such that ß = lim {y n, y*), as « —► oo. By hypothe-

sis, there exists a sequence (yn), with yn £ Co(yn , y j, ... ), that converges

weakly to an element, say a, of Co(^). Each yn is of the form

9n = E V«+i >      with *i > 0 and ^ A;. = 1.

Let e > 0 be arbitrary. Since ß = lim(yn , y*), there exists an integer 7Y such

that, for all n > N, (yn,y*)> ß -e. So for all n > N,

(K . /> = E X^n+l . /> > E ¿A* - •) - /» - «•

Hence, (a, y*) > ß - e . As /? = sup g^^^y, y*), the element a belongs to

Co(A), and e is arbitrary, we conclude that ß = (a, y*) and Co(^4) is weakly

compact. Hence A is rwc.

As a corollary of this lemma we have the following result.

Corollary 2. A bounded sequence (yn) in a Banach space Y converges weakly

to an element a in Y iff given any subsequence zk = yn of (yn) there exists

a sequence (zk), with zk £ Co(zk , zk+x, ... ), that converges weakly to a.

Proof. The implication (=>) is clear. On the other hand, if the condition of

the corollary holds, by the preceding lemma, the sequence (yn ) is rwc and a is

the unique weak cluster point of (yn). Hence yn —► a weakly.

Another result we need for the proof of the main theorem is the following

lemma, which is of independent interest. We recall that W = {f £ Ll(p, X):

for a.e. m in Q, ||/(co)|| < 1}.

Lemma 3. Let (fn) be a sequence in W. Assume that

(a) the sequence (fn) converges weakly to a function f in L (p, X); and

(b) for a.e. to in Çl, the sequence (fn(co)) is weakly Cauchy. Then, for a.e.

co in Cl, fn{co)—> f(co) weakly in X.

Proof. Let £ be a negligible set in 2 such that, for each co in Q \ E, the

sequence (fn(co)) is weakly Cauchy. For co in £l\E and x* in X*, let

(1) hx*{co)= lim(f(co),x*).
•* n—too    "

Since the sequence (fn) converges weakly to /, there exists a sequence (fn),

with /„ £ Co(fn ,fn+x,...), such that

(2) ||/„-/H= [ \\fn(co)-f(co)\\dp(co)^0,
Ja

Each /„ is of the form
J n

fn = E V„+,.      with Xx > 0 and £ A, = 1

as n —» oo.

i<k.
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Using ( 1 ) and this expression of fn , one can easily see that for each co in Q \ E

and x* in X*,

(3) lim{fn(co),x*) = hx*(co),

too. Now by (2), there exist a negligible set F in X and integers nx < n2 <

■■■ <nk< ■■■ such that, for each co in Q\F , \\fn (co)-f(co)\\ -* 0 as k —> oo .

In particular, fn (co) -* f(co) weakly. Hence by (3) and (1), we conclude that

for each co in iî\(£uf), fn(œ) ~* f(œ) weakly.

The main result of this paper is the following theorem.

Theorem 4. A subset H of W is rwc iff given any sequence (fn) in H there

exists a sequence (fn), with fn e Co(/n, fn+x, ...), such that for a.e. co in Q

the sequence (fn(co)) converges weakly in X.

Proof. Necessity. Assume H is rwc, and let (fn) be an arbitrary sequence in

H. Then by Talagrand's Theorem 1 [12], there exists a sequence (fn), with

fn £ Co(fn, fn+x, ...), and two sets C, L in I with p(CUL) = 1, such that

(a) for each co in C the sequence (/„(«)) is weakly Cauchy; and,

(b) for each co in L there exists an integer k such that the sequence

(fn(oj))n>k is equivalent to the unit basis of /'.

Should the measure of the set L be strictly positive, by Talagrand's Lemma 4,

for some integer k, the sequence (f„)n>k would be equivalent to the unit basis

of /'. Since the sequence (fn) lies in the set Co(H), which is weakly com-

pact (Krein-Smulyan's Theorem), this is not possible. Therefore p(L) = 0,

p(C) = 1, and for a.e. co in Q., the sequence (fn(co)) is weakly Cauchy. Then

by Talagrand's Lemma 8, the sequence (fn) is weakly Cauchy in L:(p, X).

Since the sequence (fn) lies in the weakly compact set Co(H), it has a weak

cluster point / and, being weakly Cauchy, fn —> / weakly. Now the preceding

lemma shows that, for a.e. co in Q, fn(co) —> f(co) weakly.

Sufficiency. Assume the condition of the theorem holds. Let (fn) be an

arbitrary sequence in H. Then by hypothesis, there exists a sequence (fn)

with fn £ Co(fn, fn+x, ...) such that, for a.e. w in ii, the sequence (fn(co))

converges weakly in X . Let f(co) = weak lim fn(co) whenever this limit exists

and f(co) = 0 otherwise. Since ||/„((y)|| < 1 for a.e. co in Q, and all n in N,

we have ||/(a>)|| < 1 for a.e. co in Í2. Also, the functions fn being strongly

measurable, / is "almost separably" valued and weakly measurable. Hence, by

Pettis's Measurability Theorem [6, p. 42] / is strongly measurable, and f £ W .

Then, by Talagrand's Lemma 8, f„—>f weakly. Hence by Lemma I, H is

rwc.

We proceed with some corollaries of this theorem. The first corollary is an

immediate consequence of Theorem 4 and Corollary 2.
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Corollary 5. A sequence (fn) in W converges weakly to a function f in

L (p, X) iff, given any subsequence gk = fn of (fn), there exists a sequence

(gk) with gk £ Co(gk, gk+x, ...) such that for a.e. co in Q, gk(co) -► f(co)

weakly in X.

The most useful corollary of the theorem seems to be the following one.

Corollary 6. Let H be a subset of W and assume that for a.e. co in Q, the set

H(co) = {f(co) : f £ H) is rwc. Then H is rwc.

Proof. Let (fn) be an arbitrary sequence in H. As in the proof of The-

orem 4, by Talagrand's Theorem 1, there exist a sequence (fn) with fn £

Co(fn , fn+x, ...) and two sets C, L in X with p(CUL) = 1 such that

(a) for each co in C the sequence (fn(co)) is weakly Cauchy; and,

(b) for each co in L there exists an integer k such that the sequence

(fn(co))n>k is equivalent to the unit basis of /'.

Since, for a.e. m ixt Q, the set CoH(co) is rwc and the sequence (/„(&>)) lies

in this set, we conclude that p(L) = 0, p(C) = 1, and for a.e. co in Q, the

sequence (fn(co)) converges weakly in X . Hence by the theorem, the set H is

rwc.

As an immediate application of this corollary we have the following result,

which is due to J. Diestel [5].

Proposition 7. Let K be a weakly compact subset of X and K = {/ £ Ll(p, X):

for a.e. co in Í2, f(co) £ K). Then K is rwc.

Proof. We can assume that K is contained in the unit ball of X. Then K is

a subset of W and the preceding corollary applies to K.

For the proof of the next theorem, we recall that a subset A of L1 (p, X) is

said to be uniformly integrable if the set V(A) — {\\f(-)\\ '■ f £ A) is uniformly

integrable [6, p. 74].

Theorem 8. A subset A of L (p, X) is rwc iff given e > 0 there exist an integer

N and a rwc subset H of W(N) such that ACH + eB(0).

Proof. Assume A is rwc. Then A is uniformly integrable. This follows, for

instance, from [6, IV.2.4]. So we have:

(4) Ve > 0 35 > 0 V5 £ X I p(B) < 8 => sup / f|/||4t < e
V feA3b

Let e > 0 be fixed. Then using (4), we can find an integer ./V such that for

each / in A, p({co £ Q: ||/(ft>)|| > N}) < S. Now if for / in A, we put

fN = f • XEf, where Ef = {co £ Q: \\f(co)\\ < N}, we get that ||/ - fN\\ < e

for all / in A. Hence if we put H = {fN: f £ A], then H C W(N) and

A ç H+eB(0). The set H is contained in the set D = {f-xE '■ f £ A, E e X}.

The sets A and {xE- E £ X} being rwc in Ll(p, X) and Ll(p), respectively,
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one can easily see that the set D is rwc. Hence the set H is rwc. This proves

the necessary part of the theorem. The sufficiency part follows from the lemma

of A. Grothendieck recalled as in § 1.

The following corollary of this theorem gives a useful sufficient condition for

a subset A of Ll(p, X) to be rwc, also see Corollary 12 of [12].

Corollary 9. Let A be a bounded uniformly integrable subset of Ll(p, X). As-

sume that for a.e. co in Q, the set A(co) = {f(co): f £ A) is rwc. Then A is

rwc.

Proof. Let £ > 0 be an arbitrary. With the notations of the proof of the

preceding theorem, A ç H + eB(0). The set H is contained in W(N) for

some integer N, and for a.e. co in Q, the set H(co) is contained in the rwc set

A(co) U {0} . Hence by Corollary 6, H is rwc. Then by the preceding theorem,

A is rwc.

As an immediate application of this corollary, we mention the following well-

known result [6, IV.2.1].

Proposition 10. Assume X is reflexive. Then a subset A of Lx(p, X) is rwc iff

it is bounded and uniformly integrable.

The final result of the paper is the following "Lebesgue's Dominated Conver-

gence Theorem"-type result. This result is also an immediate consequence of

Corollary 9.

Proposition 11. Let g: fi —► R be a positive integrable function and (fn) a

sequence in Ll(p, X) such that

(a) for a.e. co in Í2 and all n£N, \\fn(co)\\< g(co); and,

(b) for a.e. co in Q., the sequence (fn(co)) is rwc. Then the sequence (fn) is

rwc.

Added in proof. Prof. P. Saab has informed us that the set D in the proof

of Theorem 8 need not be rwc, and she is right. However this does not affect

the subsequent results since they depend only on the sufficiency part of this

theorem. Moreover we have the following result which is more general than

Theorem 4.

Theorem (AB). A subset A of Lx(p, X) is rwc iff it is bounded, uniformly

integrable and for any sequence (fn) in A there exists a sequence (/„), with fn £

Co( fn, fn+x, ...), such that for a.e. co in ÍÍ the sequence (/„(ft))) converges

weakly in X.

Sketch of the proof. The proof of the necessity is very similar to that of The-

orem 4. However one should use Lemma 7 of [12] instead of Theorem 1 of

[12]. For the sufficiency, let A, (/„), and (/J be as in the statement. Let

/(ft)) = weak-lim/„(ft)) whenever this limit exists and /(ft)) = 0 otherwise.

Then / is strongly measurable and since  ||/(ft>)|| < liminf ||/„(ft>)||  a.e.,  /
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is in L (p, X). Let h : Q —► X* be a weak* scalarly measurable essentially

bounded function, i.e., h £ L (p, X)*. Then, A being uniformly integrable,

the sequence ((/„,/?)), is rwc. Since, for a.e. co in Q, (fn(co), h(co)) -♦

(/(ft)), A(o>)), we conclude that the sequence ({fn , h)) converges to (/, h) in

L (p). Hence /„ —► / weakly in L (p, X) and, by Lemma 1, A is rwc.
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