EXTENSIONS OF ISOMORPHISMS BETWEEN AFFINE ALGEBRAIC SUBVARIETIES OF k^n TO AUTOMORPHISMS OF k^n ### SHULIM KALIMAN (Communicated by Clifford J. Earle, Jr.) ABSTRACT. We derive a criterion, when an isomorphism between two closed affine algebraic subvarieties in an affine space can be extended to an automorphism of the space. ## 1. Introduction Let k^n be an affine n-dimensional space over an algebraically closed field k of characteristic 0; A and B be affine algebraic subvarieties of k^n ; and let $\phi \colon A \to B$ be an isomorphism. Then ϕ can be extended to a polynomial mapping $\Phi \colon k^n \to k^n$ (e.g., see [Sh]). This extension Φ is not unique, and we are interested in whether it is possible to find an extension of ϕ that is a polynomial automorphism of k^n ? If A and B are isomorphic algebraic contractible curves in the complex plane, then the theorems of Abhyankar–Moh–Suzuki and Lin–Zaidenberg give the positive answer to this question [AM, S, LZ]. Z. Jelonek treated the case of smooth subvarieties A and B. His theorem says that in this case an isomorphism $A \to B$ can be extended to a polynomial automorphism if $n > 4 \dim A + 1$ [J]. The main result of this paper is: **Theorem 1.** Let $\phi: A \to B$ be an isomorphism between two closed affine algebraic subvarieties A and B of k^n , and TA be the Zariski's tangent bundle of A. If $$(1.1) n > \max(2\dim A + 1, \dim TA),$$ then ϕ can be extended to a polynomial automorphism of k^n . In particular, when A and B are smooth subvarieties, the right-hand side of (1.1) equals $2 \dim A + 1$, and Theorem 1 gives the following generalization of the Abhyankar-Moh-Suzuki's theorem. Received by the editors March 5, 1990. 1980 Mathematics Subject Classification (1985 Revision). Primary 14E25. **Corollary 2.** Let Γ be an affine algebraic curve in k^n . If Γ is isomorphic to k and n > 3, then there exists a polynomial automorphism that maps Γ to a coordinate axis. This result was also proved in [J]. We restrict ourselves to the case of the field of complex numbers C. According to "Lefschetz Principle" all other cases can be reduced to this one [BCW]. The paper contains four sections, including the introduction. In the second section we discuss several general facts from algebraic geometry. In particular, we prove that a germ of a rational function on an algebraic variety that coincides with a germ of a holomorphic function can be considered a germ of a regular function. We are not sure that it is a new fact. At least in the special case of the germs to be located at a regular point, one can find this theorem in [Sh]. Using this fact, we show that if a morphism of algebraic varieties is a biholomorphic equivalence, then it is an isomorphism. The third section contains a proof of Theorem 1. In the fourth section we construct an example, which shows that condition (1.1) cannot be improved. The results of this paper were announced in [K]. The author is pleased to express his thanks to V. Lin, M. Stesin, and M. Zaidenberg for stimulating discussions. #### 2. Preliminaries First we fix notations for this section. Let A be a local Noetherian ring, and \overline{A} be its μ -adic completion, where μ is the maximal ideal of A. For every ideal α in A let $\overline{\alpha}$ be its closure in \overline{A} in the μ -topology. We recall some relationships between α and $\overline{\alpha}$ (e.g., see [SZ]). - (a) The elements of α generate $\overline{\alpha}$ over the ring \overline{A} . - (b) $\overline{\alpha} + \overline{\beta} = \overline{\alpha + \beta}$. - (c) If α is a prime ideal then $\overline{\alpha}$ coincides with its own radical. - (d) $\bigcap_{k=1}^{\infty} (\alpha + \mu^k) = \alpha$ (the Krull's theorem). In other words, the Krull's theorem tells that $\overline{\alpha} \cap A = \alpha$. Hence (d') If $\overline{\alpha} \subset \overline{\beta}$ then $\alpha \subset \beta$. Denote by R the ring of germs of regular functions at the origin in C^n , and by H the ring of the germs of the holomorphic function at the origin in C^n . These rings are local, and their completions coincide with the ring F of formal power series in n complex variables. **Lemma 3.** Let I be a prime ideal in R that determines a germ V of an algebraic variety at the origin. Let J be the ideal in H generated by the germs vanishing on V. Then I generates J over the ring H. *Proof.* Let I generate ideal K over the ring H. By Nullstellensatz, for every $f \in J$ there exists a positive integer m such that $f^m \in K$ (e.g., see [GR]). By (a), $\overline{I} = \overline{K}$, and $f^m \in \overline{I}$. Then (c) implies $\overline{I} \supset J$. On the other hand, $J \supset K$. Therefore, $\overline{J} = \overline{K}$. Using (d'), we obtain J = K. \square The following theorem is a natural corollary of Lemma 3. This theorem is not necessary for the proof of our main result, and we place it here for the sake of completeness. **Theorem 4.** Let \widetilde{V} be a closed affine algebraic subvariety in C^n generated by a prime ideal \widetilde{I} in the ring of polynomials on C^n . If \widetilde{J} is an ideal in the ring Hol of holomorphic functions on C^n , which consists of the functions vanishing on \widetilde{V} . Then \widetilde{I} generated \widetilde{J} over Hol. Proof. Let polynomials f_1,\ldots,f_m be generators of \widetilde{I} , and f_{1w},\ldots,f_{mw} be the germs of these polynomials at a point $w\in C^n$. Let V_w be the germ of V at the point w (perhaps, $V_w=\varnothing)$, and let I_w be the ideal of the germs of regular functions at w that are vanishing on V_w . Clearly, f_{1w},\ldots,f_{mw} are generators of I_w . By Lemma 3, for every $h\in\widetilde{J}$ and for every point $w\in C^n$, there exists a representation $h=\sum_i f_i g_i^w$ in some neighborhood U_w of w, where the functions g_i^w are holomorphic in U_w . Then $\sum_i f_i (g_i^w-g_i^u)=0$ over $U_w\cap U_u$, i.e., $\{(g_i^w-g_i^u)_{i=1}^m\}$ is a one-cocycle with coefficients in the sheaf of relations among f_1,\ldots,f_m . By the Oka's theorem, this sheaf is coherent (e.g., see [GR]). Hence, there exists such a cocycle $\{(s_i^w)_{i=1}^m\}$ that $\sum_i f_i s_i^w=0$ over U^w , and $g_i^w-s_i^w=g_i^u-s_i^w$ over $U_w\cap U_u$ for each pair of points u and w. The set $\{g_i^w-s_i^w\}$ determines a global holomorphic function g_i , and $h=\sum_i f_i g_i$. \square **Theorem 5.** Let V be an algebraic variety, r be a rational function on V. If r can be extended as a holomorphic function in a neighborhood of a point $w \in W$, then the function r is regular at w. *Proof.* We can assume that V is an algebraic subvariety of C^n , and w is the origin in C^n . Let r=p/q, where p and q are polynomials. By α_p and α_q we denote the principle ideals in R generated by p and q respectively. By α_p' and α_q' we denote the similar principle ideals in H. Under the assumptions of the theorem, there exists a germ f of a holomorphic function such that p=qf+j, where $j\in J$. Thus $\alpha_p'\subset\alpha_q'+J$. Lemma 3, (a) and (b) imply $\overline{\alpha}_p=\overline{\alpha}_p'\subset\overline{\alpha_q'+J}=\overline{\alpha}_q'+\overline{J}=\overline{\alpha}_q+\overline{I}=\overline{\alpha}_q+\overline{I}$. By (d'), $\alpha_p\subset\alpha_q+I$, ie., there exists $t\in R$ and $i\in I$ such that t=(p-i)/q. \square **Theorem 6.** Let $\phi: A \to B$ be a morphism of algebraic varieties A and B. If ϕ is a biholomorphic equivalence of A and B as complex spaces, then ϕ is an isomorphism. *Proof.* Since ϕ is one-to-one on the smooth parts of A and B, ϕ induces the isomorphism of the fields of the rational functions on A and B. Let U be a Zariski open affine subset of A and $\phi(U) = V$. Let x_1, \ldots, x_m be coordinate functions on U. Since x_k is a rational function on A, $x_k \circ \phi$ is a rational function on V. Moreover it is a holomorphic function on V, and, by Theorem 5, it is regular. Hence V is a Zariski open subset of B, and the restriction of ϕ^{-1} to V is regular. Clearly, subsets of the type of V cover the whole variety B. Therefore ϕ^{-1} is an isomorphism. \square # 3. Proof of Theorem 1 **Proposition 7.** Let A and B be closed affine subvarieties of C^n , and let $\phi: A \to B$ be a morphism such that - (a) ϕ is bijective. - (b) for every point $a \in A$ and $b = \phi(a)$ the induced mapping of the tangent spaces $\phi_{a*} : T_a A \to T_b B$ is isomorphism. - (c) ϕ is a finite morphism. Then ϕ is an isomorphism between A and B. *Proof.* Let A_a be a germ of A at a point $a \in A$, and B_b be a germ of B at the point $\ddot{b} = \phi(a)$. Suppose there exists an irreducible branch D of B_b that does not belong to $\phi(A_a)$. Then we choose a sequence of points $\{b_i^{\ \ b}\}$ in $D - \phi(A_a)$ such that $b_i \to b$. Let $a_i = \phi^{-1}(b_i)$. Since $b_i \notin \phi(A_a)$, the sequence a_i cannot converge to a, and no other point in C^n is a limiting point of $\{a_i\}$ (because A is closed, and ϕ is bijective). But it does not tend to infinity because of finiteness of ϕ (e.g. see [Sh]). Hence D does not exist, and ϕ is a homeomorphism. According to Theorem 6, it is enough to verify that ϕ is biholomorphic. We choose a sufficiently small neighborhood U of a point $a \in A$. Suppose a coincides with the origin in C^n , and $T_aA =$ $\{(x_{k+1} = \cdots = x_n = 0)\}$. Then the projector $\rho: U \to T_{\sigma}A$ given by the formula $(x_1, \ldots, x_n) \to (x_1, \ldots, x_k)$ establishes a biholomorphic equivalence between U and $\rho(U)$. We can construct an analogous projector $\tau: V \to T_{h}B$ for the point $b = \phi(a)$ and $V = \phi(U)$. Let $\chi: \tau(V) \to V$ be the inverse mapping for τ . It remains to mention that the restriction ϕ to U coincides with $\chi \circ \phi_{*a} \circ \rho$. At this point we fix several notations. Let us consider C^{2n} as a direct sum $C^n \oplus C^n$, which is naturally embedded in $X = X_1 \times X_2$ with $X_k \cong CP^n$. We choose a coordinate system $(x,y) = (x_1,\ldots,x_n,y_1,\ldots,y_n)$ and the homogeneous coordinate systems (t_{0k},\ldots,t_{nk}) in X_k (k=1,2) such that $x_i = t_{i1}/t_{01}$ and $y_i = t_{i2}/t_{02}$. For a subset $A \subset C^{2n}$ we denote by A_X the set $\overline{A} - A$, where \overline{A} is a closure of A in X. If A is an affine algebraic subvariety in C^{2n} , then the tangent space T_aA at any point $a \in A$ has the natural embedding in the space $W \cong C^{2n}$ of the constant vector field on C^{2n} . The Zariski tangent bundle of A is the set $TA = \{(a,v)|a \in A, v \in T_aA\}$. Let T^0A be the image of TA under the mapping $(a,v) \to a+v$, where we treat $v \in W$ as a vector in C^{2n} . Recall that the chord variety CA of A is the closure in C^{2n} of the set of lines, crossing A at least at two points (since we have fixed the coordinate system, this definition is correct). Let $LA = CA \cup T^0A$. It is easy to show that LA is a closed affine algebraic subvariety in C^{2n} , when A is the same one. We set $l(A) = \max(2 \dim A + 1, \dim TA)$. It is known that $\dim CA \le 2 \dim A + 1$ (e.g., see [GH]). Hence $\dim LA \le l(A)$. **Proposition 8.** Let $\phi: C^n \to C^{m_k}$ (k = 1, 2) be linear mappings, A be a closed affine subvariety of C^{2n} , $\phi: A \to C^m$ $(m = m_1 + m_2)$ be the restriction of the mapping $\phi_1 \oplus \phi_2$ to A, and $V = \ker \phi_1 \oplus \ker \phi_2$. If $$(3.1) \overline{LA} \cap V_{Y} = \emptyset,$$ then $B = \phi(A)$ is a closed affine algebraic subvariety of C^m and $\phi: A \to B$ is an isomorphism. *Proof.* Without loss of generality we can suppose that $m_k \le n$, and $\phi_1 \oplus \phi_2$ is given by the formula $$(3.2) (x, y) \to (x_1, \dots, x_{m_1}, y_1, \dots, y_{m_2}).$$ Then $V_X=V^1\cup V^2$, where $V^1=U^1\times X_2$, $V^2=X_1\times U^2$, and $U^k=\{t_{0k}=\cdots=t_{m_kk}=0\}$. Under the assumptions of the proposition, $\overline{LA}\cap V_X=\varnothing$, i.e., for every point of LA and every k=1, 2 there exists at least one nonzero coordinate t_{ki} with $i\leq m_k$. Since $A\subset LA$, one can define the regular mapping $\overline{\phi}\colon \overline{A}\to Y\stackrel{\mathrm{def}}{=} CP^{m_1}\times CP^{m_2}$ by the formula $$(t_{01}, \ldots, t_{n1}, t_{02}, \ldots, t_{n2}) \rightarrow (t_{01}, \ldots, t_{m,1}, t_{02}, \ldots, t_{m,2}).$$ Clearly, $\overline{\phi}(A_X) \subset Y - C^m$. Hence B is a closed affine algebraic subvariety in C^m . It is easy to show that (3.1) implies conditions (a) and (b) of Proposition 7 (for instance, if $\overline{CA} \cap V_X = \emptyset$ then ϕ is bijective). Thus it remains to verify that ϕ is a finite mapping. Let $N = 4(n+1)^2 - 1$, and $$\{T_{ij}^{ks}|k, s=1, 2; i, j=0, \ldots, n\}$$ be a homogeneous coordinate system in CP^N . We consider the embedding $\psi \colon X \to CP^N$ given by the formulas $\{T_{ij}^{ks} = t_{ik}t_{js}\}$. Let $$U = \{ T_{00}^{12} = T_{11}^{11} = \dots = T_{m_1 m_1}^{11} = T_{11}^{22} = \dots = T_{m_2 m_2}^{22} = 0 \}.$$ Set $D=\psi(\overline{A})$. The spaces \overline{A} and V_X are not intersecting, thus $U\cap D=\varnothing$. Hence the projector ρ from D with the center at U in a projective space $E\cong CP^m$ is a finite mapping (e.g. see [Sh]). The mapping $\overline{\chi}=\rho\circ\psi:\overline{A}\to\rho(D)$ is a finite mapping as well. We can use $$\{T_{00}^{12}, T_{11}^{11}, \dots, T_{m_1 m_2}^{11}, T_{22}^{22}, \dots, T_{m_2 m_2}^{22}\}$$ as a homogeneous coordinate system in E. Let H be a hyperplane in E given by the equation $T_{00}^{12}=0$, and $G=\rho(D)-H$. Since $\overline{\chi}^{-1}(G)=A$, the restriction of $\overline{\chi}$ to A is a finite mapping; denote it by $\chi\colon A\to G$. One can consider $$\{T_{ii}^{kk}/T_{00}^{12}|k=1,2;\ i=1,\ldots,m_k\}$$ as a coordinate system in the affine space $E - H \cong C^m$. In this system the mapping χ has the following representation $$(3.3) (x_1, \ldots, x_n, y_1, \ldots, y_n) \to (x_1^2, \ldots, x_m^2, y_1^2, \ldots, y_m^2).$$ Denote by C[A], C[B], and C[G] the rings of regular functions over A, B, and G respectively. The mappings ϕ and χ induce the embeddings of C[B] and C[G] in C[A]. It enables us to identify the rings C[B] and C[G] with their images in the ring C[A]. Then (3.2) and (3.3) imply $C[G] \subset C[B]$. Since χ is finite, C[A] is a finitely generated C[G]-module. Hence C[A] is a finitely generated C[G]-module and G[G]-module G[**Proposition 9.** Let $\phi: A \to B$ be an isomorphism between closed affine algebraic subvarieties A and B in C^n . Let ϕ coincide with the restriction of a linear endomorphism $\tilde{\phi}: C^n \to C^n$ to A. Then ϕ can be extended to a polynomial automorphism of C^n . *Proof.* Without loss of generality we suppose that the formula $$(x) \to (x_1, \ldots, x_m, 0, \ldots, 0)$$ gives the mapping $\tilde{\phi}$. Denote by $x' = (x_1, \dots, x_m)$ the coordinate system in the subspace $C^m \cong \{x_{m+1} = \dots = x_n = 0\}$, which contains B. The inverse mapping ϕ^{-1} coincides with the restriction of polynomial mapping $\chi \colon C^m \to C^n$. Obviously, χ must be given by the formula $$\chi(x') = (x_1, \ldots, x_m, q_{m+1}(x'), \ldots, q_n(x')).$$ We set $$\alpha(x) = (x_1, \dots, x_n, x_{m+1} - q_{m+1}(x'), \dots, x_n - q_n(x')).$$ The polynomial automorphism α of C^n is what we need. \square Denote by $\rho_{m,k} \colon C^{2n} \to C^{k+m} \ (0 \le m, k \le n)$ the following projector $$(x\,,\,y)\to(x_1\,,\,\ldots\,,\,x_m\,,\,y_1\,,\,\ldots\,,\,y_k)\,.$$ **Definition.** Let $\phi: A \to B$ be an isomorphism of closed affine algebraic subvarieties in C^n and $\Gamma \subset C^{2n}$ be its graph. We shall say the triple (ϕ, A, B) is an admissible one, if - (i) $n \ge l \stackrel{\text{def}}{=} l(A)$. - (ii) for every $m=0,1,\ldots,l$ the set $D_m=\rho_{m,l-m}(\Gamma)$ is a closed affine algebraic subvariety in C^l . - (iii) the restriction $\rho_{m,l-m}$ to Γ is an isomorphism between Γ and D_m . **Proposition 10.** If a triple (ϕ, A, B) is admissible, then ϕ can be extended to a polynomial automorphism of C^n . *Proof.* By $p_m: C^{l+1} \to C^l$ and $q: C^{l+1} \to C^l$ we denote the projectors killing mth and (l+1)th coordinates respectively. Let $G_m = \rho_{m,l-m+1}(\Gamma)$. Then $G_m\subset C^{l+1}$, $p_m(G_m)=D_{m-1}$, and $q(G_m)=D_m$. It easily follows from the assumptions of the proposition that G_m is a closed affine algebraic subvariety in C^l , and the restrictions of p_m or q to G_m are isomorphisms between G_m and D_{m-1} or D_m respectively. Let us consider C^l and C^{l+1} as linear subspaces in C^n . Then we can extend p_m and q to linear endomorphisms of C^n . We use the same notations p_m and q for these endomorphisms. By Proposition 9, there exists polynomial automorphisms β_m and γ_m such that $\beta_m|G_m=p_m|G_m$ and $\gamma_m|G_m=p_m|G_m$. Set $\mu_m=\gamma_m\circ\beta_m^{-1}$. Then $\mu_m(D_m)=D_{m-1}$, and the automorphism $\mu=\mu_1\circ\cdots\circ\mu_l$ maps D_l in D_0 . Proposition 9 shows that there exist polynomial automorphisms η and ν such that $\nu(B)=D_0$ and $\eta(A)=D_l$. Let $\alpha=\nu^{-1}\circ\mu\circ\eta$. This automorphism gives the desired extension. \square Recall that $(x, y) = (x_1, \ldots, x_n, y_1, \ldots, y_n)$ is a fixed coordinate system in $C^{2n} \cong C^n \oplus C^n$. By F_m $(m = 0, \ldots, l)$ denote the space of linear mappings of C^{2n} in C^n with the first m coordinate functions depending on x only and the rest of them depending on y. **Proposition 11.** Let n < l(A). Then there exists an algebraic subvariety N_m of codimension 1 in F_m such that for every point $P \in F_m - N_m$ the set B = P(A) is a closed affine algebraic subvariety in C^l , and the restriction of P to A is an isomorphism $A \to B$. *Proof.* For every $P \in F_m$ we have $$P(x, y) = (p_1(x), \dots, p_m(x), q_1(y), \dots, q_{l-m}(x)),$$ where p_i and q_j are linear functions. Let $$V = \{ p_1(t_{11}, \dots, t_{n1}) = \dots = p_m(t_{11}, \dots, t_{n1})$$ $$= q_1(t_{12}, \dots, t_{n2}) = \dots = q_{l-m}(t_{12}, \dots, t_{n2}) = t_{01}t_{02} = 0 \}$$ (3.4) be the subset in X (here (t_{0k},\ldots,t_{nk}) are the same as the beginning of this section). Let M_m be the complex space of all subvarieties $\{V\}$ given by equations of the type (3.4). Obviously, the correspondence $P \to V$ gives the natural bundle $\rho \colon F_m \to M$. By Proposition 8, it is enough to check the condition $$(3.5) \overline{LA} \cap V = \emptyset$$ for every point of M, outside a proper subvariety. The complement of C^{2n} in X is a union of E_1 and E_2 , where $E_k = \{t_{0k} = 0\}$. Set $V_k = V \cap E_k$. Then $V = V_1 \cup V_2$, and we can rewrite (3.4) in such a way $$(\overline{LA} \cap E_k) \cap V_k = \emptyset, \qquad k = 1, 2.$$ Further we restrict ourselves to the case of k=1. We can consider V_1 as the product $$(3.7) V_1 = V_1^1 \times V_1^2,$$ where V_1^1 is the subspace of $CP^{n-1} = \{t_{11} : \cdots : t_{n1}\}$ given by the linear equations $$p_1(t_{11}, \ldots, t_{n1}) = \cdots = p_m(t_{11}, \ldots, t_{n1}) = 0,$$ and V_1^2 is the subspace $CP^n = \{t_{02} : \cdots : t_{n2}\}$ given by the linear equations $$q_1(t_{12}, \ldots, t_{n2}) = \cdots = q_{l-m}(t_{12}, \ldots, t_{n2}) = 0.$$ Thus we can identify the manifold M' of all submanifolds $\{V_1\}$ of the type (3.7) with the product of Grassmanian manifolds $\operatorname{Gr}(n-1,n-1-m) \times \operatorname{Gr}(n,n-l+m)$. For every point $a \in CP^k$ the codimension of the Shubert cycle $\{\Lambda \in \operatorname{Gr}(k,s)|a \in \Lambda\}$ is equal to k-s (e.g., see [GH]). Since $\dim \overline{LA} \cap E_1 \leq l-1$, the codimension in of the subvariety $\{V_1 \in M' | V^1 \cap LA \cap E_1 \neq \varnothing\} \subset M'$ is more or equal than m+(l-m)+(l-1)=1. Hence (3.6) holds for every point of M', outside a proper subvariety. \square Let W be the manifold of all the pairs of linear automorphisms of C^n . **Proposition 12.** Let $\phi: A \to B$ be an isomorphism between closed affine algebraic subvarieties of C^n , and l(A) < n. Then for every pair of linear automorphisms (α, β) , outside a proper subvariety in W, the triple $(\alpha(A), \beta(B), \beta \circ \phi \circ \alpha^{-1})$ is admissible. *Proof.* Denote by F the space of linear endomorphisms of C^{2n} with the first n coordinate functions depending on x only, and the rest of them depending on y. The manifold W is the complement in F of a proper algebraic subvariety. Let $\tau\colon F\to F_m$ be the following projector $$(p_1, \ldots, p_n, q_1, \ldots, q_n) \to (p_1, \ldots, p_m, q_1, \ldots, q_{l-m}).$$ By Proposition 11, there exists a proper algebraic subvariety $R_m \subset F_m$ such that for every $P \in F_m - R_m$ the subvariety B = P(A) is closed and $P: A \to B$ is an isomorphism. Hence for every pair $(\alpha, \beta) \in W - \bigcup_m \tau_m^{-1}(R_m)$ the triple $(\alpha(A), \beta(B), \beta \circ \phi \circ \alpha^{-1})$ is admissible. \square Propositions 10 and 12 give the proof of Theorem 1. # 4. Example It is natural to find out, if it is possible to improve the condition (1.1). We shall show that for every $n \ge 3$ there exist isomorphic closed affine algebraic subvarieties A and B in C^n with l(A) = n such that there is no polynomial automorphism which maps A to B. We shall present an example for n = 3. For other dimensions examples are analogous. Consider the mappings $\rho_k \colon C \to C^3$ (k = 1, 2) given by the formulas $$\begin{split} & \rho_1 \colon t \to (t^7 \,,\, t^{11} \,,\, t^{13}) \,, \\ & \rho_2 \colon t \to (t^7 + t^{14} \,,\, t^{11} \,,\, t^{13}) \,. \end{split}$$ As A and B we take the curves $\rho_1(C)$ and $\rho_2(C)$ respectively. The mapping $$\phi: (x, y, z) \rightarrow (x + x^2, y, z)$$ gives a proper isomorphism (here (x, y, z) is a coordinate system in C^3). The curve A is invariant relative to an automorphism $$\gamma_{\lambda} \colon (x\,,\,y\,,\,z) \to (\lambda^{7}x\,,\,\lambda^{11}y\,,\,\lambda^{13}z)\,,$$ where $\lambda \in C^*$. This automorphism generates the mapping $\tilde{\gamma}_{\lambda} : t \to \lambda t$ in the commutative diagram. $$C \xrightarrow{\tilde{\gamma}_{\lambda}} C$$ $$\downarrow \rho_{1} \qquad \qquad \downarrow \rho_{1}$$ $$A \xrightarrow{\gamma_{\lambda}} A$$ Assume there exists a polynomial automorphism β' such that its restriction β to A is an isomorphism between A and B. The commutative diagram $$C \xrightarrow{\tilde{\beta}} C$$ $$\downarrow^{\rho_1} \qquad \downarrow^{\rho_2}$$ $$A \xrightarrow{\beta} B$$ defines the mapping $\tilde{\beta}$. Since an isomorphism maps singular points to singular points, $\tilde{\beta}(t) = \lambda t$ for some $\lambda \in C^*$. Thus for $\alpha = \beta \circ \gamma_{\lambda^{-1}}$, $\tilde{\alpha}(t) = t$, and the restriction of α to A coincides with the mapping ϕ . Therefore $$\alpha(x, y, z) = (x + x^2 + p_1(x, y, z), y + p_2(x, y, z), z + p_3(x, y, z)),$$ where all $\{p_k\}$ vanish on A. It is easy to show that, if polynomial vanishes on A, it does not contain monomials x, x^2 , y, yx, z, and zx with nonzero coefficients. Hence the Jacobian $J(\alpha)$ of the mapping α coincides with 1+2x+h(x,y,z), where the polynomial h does not contain monomial x with a nonzero coefficient. This means the Jacobian is not constant and α cannot be an automorphism. In conclusion we would like to ask two questions. We do not know if it possible to improve the condition $n > 2 \dim A + 1$ in the case of smooth subvarieties and positive dim A. We would like to find out if a smooth simply connected irreducible algebraic curve in C^3 can be mapped on a coordinate axis by a polynomial automorphism. #### REFERENCES [AM] S. S. Abhyankar and T. T. Moh, Embedding of the line in the plane, J. Reine Angew. Math. 276 (1975), 148-166. [BCW] H. Bass, E. H. Connel, and D. Wright, The Jacobian conjecture: reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. (N.S.) 7 (1982), 287-330. - [GH] P. Griffiths and J. Harris, Principles of algebraic geometry, John Wiley, New York, 1978. - [GR] R. C. Gunning and H. Rossi, Analytic functions of several complex variables, Prentice-Hall, Englewood Cliffs, NJ, 1965. - [J] Z. Jelonek, The extension of regular and rational embeddings, Math. Ann. 277 (1987), 113–120. - [K] Sh. Kaliman, On extensions of isomorphisms of affine subvarieties of C^n to automorphisms of C^n , Trans. of the 13-th All-Union School on the Theory of Operators on Functional Spaces, Kuibyshev, 1988, p. 84. (Russian) - [LZ] V. Y. Lin and M. G. Zaidenberg, An irreducible simply connected curve in C² is equivalent to quasihomogeneous curves, Soviet Math. Dokl. 28 (1983), 200-204. - [Sh] I. R. Shafarevich, Basic algebraic geometry, Springer-Verlag, New York, Heidelberg, and Berlin, 1974. - [S] M. Suzuki, Propriétiés topologiques des polynômes de duex variables complexes, et automorphismes algébriques de l'espase C^2 , J. Math. Soc. Japan **26** (1974), 241–257. - [SZ] P. Samuel and O. Zariski, Commutative algebra, D. Van Nostrand, Princeton, NJ, 1958. MATHEMATICS DEPARTMENT, WAYNE STATE UNIVERSITY, DETROIT, MICHIGAN 48202