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Abstract. We derive a criterion, when an isomorphism between two closed

affine algebraic subvarieties in an affine space can be extended to an automor-

phism of the space.

1. Introduction

Let k" be an affine «-dimensional space over an algebraically closed field

k of characteristic 0 ; A and B be affine algebraic subvarieties of k" ; and

let (¡>: A —» B be an isomorphism. Then <f> can be extended to a polynomial

mapping <I>: kn —> k" (e.g., see [Sh]). This extension O is not unique, and

we are interested in whether it is possible to find an extension of <f> that is

a polynomial automorphism of kn1 If A and B are isomorphic algebraic

contractible curves in the complex plane, then the theorems of Abhyankar-

Moh-Suzuki and Lin-Zaidenberg give the positive answer to this question [AM,

S, LZ]. Z. Jelonek treated the case of smooth subvarieties A and B. His

theorem says that in this case an isomorphism A —> B can be extended to a

polynomial automorphism if n > 4 dim ,4 + 1 [J]. The main result of this paper

is:

Theorem 1. Let <f>: A -* B be an isomorphism between two closed affine alge-

braic subvarieties A and B of k", and TA be the Zariski's tangent bundle of

A. If

(1.1) n > max(2 dim A + I, dim TA),

then 4> can be extended to a polynomial automorphism of k".

In particular, when A and B are smooth subvarieties, the right-hand side

of ( 1.1 ) equals 2 dim A + 1, and Theorem 1 gives the following generalization

of the Abhyankar-Moh-Suzuki's theorem.
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Corollary 2. Let Y be an affine algebraic curve in kn . If Y is isomorphic to

k and n > 3, then there exists a polynomial automorphism that maps Y to a

coordinate axis.

This result was also proved in [J].

We restrict ourselves to the case of the field of complex numbers C. Accord-

ing to "Lefschetz Principle" all other cases can be reduced to this one [BCW].

The paper contains four sections, including the introduction. In the second

section we discuss several general facts from algebraic geometry. In particular,

we prove that a germ of a rational function on an algebraic variety that coincides

with a germ of a holomorphic function can be considered a germ of a regular

function. We are not sure that it is a new fact. At least in the special case of the

germs to be located at a regular point, one can find this theorem in [Sh]. Using

this fact, we show that if a morphism of algebraic varieties is a biholomorphic

equivalence, then it is an isomorphism. The third section contains a proof of

Theorem 1. In the fourth section we construct an example, which shows that

condition (1.1) cannot be improved.

The results of this paper were announced in [K]. The author is pleased to

express his thanks to V. Lin, M. Stesin, and M. Zaidenberg for stimulating

discussions.

2. Preliminaries

First we fix notations for this section. Let A be a local Noetherian ring, and

A be its /¿-adié completion, where p is the maximal ideal of A. For every

ideal a in A let a. be its closure in A in the /¿-topology. We recall some

relationships between a and a (e.g., see [SZ]).

(a) The elements of a generate a over the ring A.

(b) ä + ~ß = a + ß.

(c) If a is a prime ideal then ä coincides with its own radical.

(d) nr=i(a + /) = a (the K™11'8 theorem).

In other words, the Krull's theorem tells that a n A = a. Hence

(d') If a c ~ß then a C ß .

Denote by R the ring of germs of regular functions at the origin in C" , and

by 77 the ring of the germs of the holomorphic function at the origin in C" .

These rings are local, and their completions coincide with the ring F of formal

power series in n complex variables.

Lemma 3. Let I be a prime ideal in R that determines a germ V of an algebraic

variety at the origin. Let J be the ideal in 77 generated by the germs vanishing

on V. Then I generates J over the ring H.

Proof. Let 7 generate ideal K over the ring 77. By Nullstellensatz, for every

f £ J there exists a positive integer m such that fm £ K (e.g., see [GR]). By

(a), 7 = K, and fm £ 7. Then (c) implies 7 D 7 . On the other hand, J D K.

Therefore, 7 = K. Using (d'), we obtain J = K.   G
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The following theorem is a natural corollary of Lemma 3. This theorem is

not necessary for the proof of our main result, and we place it here for the sake

of completeness.

Theorem 4. Let V be a closed affine algebraic subvariety in Cn generated by

a prime ideal I in the ring of polynomials on C" . If J is an ideal in the ring

Hoi of holomorphic functions on C", which consists of the functions vanishing

on V. Then I generated J over Hoi.

Proof. Let polynomials fx, ... , fm be generators of 7, and fXw, ... , fmw be

the germs of these polynomials at a point w £ Cn . Let Vw be the germ of V

at the point w (perhaps, Vw = 0), and let Iw be the ideal of the germs of

regular functions at w that are vanishing on Vw . Clearly, fXw, ... , fmw are

generators of Iw . By Lemma 3, for every A € 7 and for every point w £ C" ,

there exists a representation A = J2¡ fg™ in some neighborhood Uw of w ,

where the functions g™ are holomorphic in Uw . Then ^2¡f¡(g^ - g") - 0

over UwnUu, i.e., {(g™ -g")™=l} is a one-cocycle with coefficients in the sheaf

of relations among fx, ... , fm- By the Oka's theorem, this sheaf is coherent

(e.g., see [GR]). Hence, there exists such a cocycle {(s™)™=x) that J2¡fis™ — 0

over Uw , and g™ - sf = g" - s" over Uw n Uu for each pair of points u

and w . The set {g™ -s™} determines a global holomorphic function gt, and

*-£,/*-   a

Theorem 5. Let V be an algebraic variety, r be a rational function on V. If r

can be extended as a holomorphic function in a neighborhood of a point w £ W,

then the function r is regular at w .

Proof. We can assume that V is an algebraic subvariety of C" , and w is the

origin in C". Let r = p/q, where p and q are polynomials. By a and a

we denote the principle ideals in R generated by p and q respectively. By a'p

and a we denote the similar principle ideals in 77. Under the assumptions

of the theorem, there exists a germ / of a holomorphic function such that

p = qf + j, where j £ J. Thus a'p c a'q + J. Lemma 3, (a) and (b ) imply

^=^^ + 7=^+7 = 5^+7= aq+I. By (d'), ap c aq + I, ie., there

exists t £ R and i £ I such that t = (p - i)/q .   O

Theorem 6. Let <f>: A —> B be a morphism of algebraic varieties A and B. If

<f> is a biholomorphic equivalence of A and B as complex spaces, then <fi is an

isomorphism.

Proof. Since </> is one-to-one on the smooth parts of A and B, tf> induces the

isomorphism of the fields of the rational functions on A and B . Let f7 be a

Zariski open affine subset of A and tf>(U) = V . Let xx, ... , xm be coordinate

functions on U. Since xk is a rational function on A, xk o <p is a rational

function on V. Moreover it is a holomorphic function on V, and, by Theorem

5, it is regular. Hence F is a Zariski open subset of B , and the restriction of
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<f> ' to V is regular. Clearly, subsets of the type of V cover the whole variety

B . Therefore 4>~   is an isomorphism.   D

3. Proof of Theorem 1

Proposition 7. Let A and B be closed affine subvarieties of C", and let 4>: A -*

B be a morphism such that

(a) 0 is bijective.

(b) for every point a £ A and b — <f>(a) the induced mapping of the tangent

spaces 4>ait: TaA —> TbB is isomorphism.

(c) (j> is a finite morphism.

Then (j) is an isomorphism between A and B.

Proof. Let Aa be a germ of A at a point a £ A, and Bb be a germ of B

at the point b = 4>(a). Suppose there exists an irreducible branch D of Bb

that does not belong to 4>(Aa).   Then we choose a sequence of points {bj}

in D - 4>(Aa) such that bj-+b. Let a. = <p~\bj). Since ¿>. £ 0L4J, the

sequence a; cannot converge to a, and no other point in Cn is a limiting

point of {a } (because ^4 is closed, and <f> is bijective). But it does not tend

to infinity because of finiteness of <f> (e.g. see [Sh]). Hence 7> does not exist,

and 0 is a homeomorphism. According to Theorem 6, it is enough to verify

that 4> is biholomorphic. We choose a sufficiently small neighborhood U of

a point a £ A. Suppose a coincides with the origin in C", and TaA =

{(xk+x — ■■■ — xn — 0)}. Then the projector /?:£/-> TaA given by the

formula (xx, ... , xn) —► (xx, ... , xk) establishes a biholomorphic equivalence

between U and p(U). We can construct an analogous projector t: V —> TbB

for the point b = (¡>(a) and V = 4>(U). Let #: t(F) —► V be the inverse

mapping for r. It remains to mention that the restriction <f> to U coincides

with x ° 0»a ° p ■   n

At this point we fix several notations. Let us consider C " as a direct sum

C" e C, which is naturally embedded in X = Xx x X2 with Xk S CP".

We choose a coordinate system (x, y) = (xx, ... , xn,yx, ... , yn) and the

homogeneous coordinate systems (tQk, ... , tnk) in Xk (k = 1, 2) such that

x; = tn/tox and y( = ta/t02. For a subset ^ c C2n we denote by ^ the

set A - A, where A is a closure of A in X. If A is an affine algebraic

subvariety in C ", then the tangent space TaA at any point a £ A has the

natural embedding in the space W = C n of the constant vector field on C " .

The Zariski tangent bundle of A is the set TA = {(a, v)\a £ A , v £ TaA} . Let

7 A be the image of 7,4 under the mapping (a, v) —> a + v , where we treat

ü € W as a vector in C2n . Recall that the chord variety CA of A is the closure

in C2n of the set of lines, crossing A at least at two points (since we have fixed

the coordinate system, this definition is correct). Let LA = CA U T°A. It is

easy to show that LA is a closed affine algebraic subvariety in C " , when A
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is the same one. We set 1(A) = max(2dim^ + 1, dim TA). It is known that

dimCA < 2 dim ,4 + 1  (e.g., see [GH]). Hence dim LA < 1(A).

Proposition 8. Let </>: C" —► Cm<r (k = 1, 2) be linear mappings, A be a closed

affine subvariety of C ", </>: A -> Cm (m = mx + m2) be the restriction of the

mapping 4>x®4>2 to A, and V = ker<j>x © ker<j>2. If

(3.1) LÄnvx = z,

then B — <p(A) is a closed affine algebraic subvariety of Cm and <fi: A -» B is

an isomorphism.

Proof. Without loss of generality we can suppose that mk < n , and <f>x®<p2 is

given by the formula

(3.2) (x,y)^(xx,...,xm¡,yx,..., ymJ.

Then Vx = V1 u V2, where F1 = Ul x X2, V2 = Xx x U2, and Uk = {tok =

• • • = t k = 0}. Under the assumptions of the proposition, LA n Vx = 0, i.e.,

for every point of LA and every k — 1, 2 there exists at least one nonzero

coordinate tki with i <mk. Since A c LA , one can define the regular mapping

0: A - Y d= CPm< x CP™1 by the formula

Uoi » •• • » *«i » *Q2» • •• > tn2> ~* ^01 > • • • » *m,l » *02.'m22^ ■

Clearly, (j>(Ax) C Y -Cm . Hence B is a closed affine algebraic subvariety in

Cm . It is easy to show that (3.1) implies conditions (a) and (b) of Proposition

7 (for instance, if CA C\VX = 0 then <fi is bijective). Thus it remains to verify

that <p is a finite mapping. Let N = 4(n + l)2 - 1, and

{Tj\k, s = 1,2;  i, j = 0, ... , «}

be a homogeneous coordinate system in CP . We consider the embedding

ip: X -» CP^ given by the formulas {7^ = f^.J . Let

U - rf - ^n = ••• = Ti]m¡ = 7ÍÍ = .-. = T22imi = 0}.

Set D = i//(A). The spaces A and Fx are not intersecting, thus U n 7> = 0.

Hence the projector /? from D with the center at U in a projective space

E = CPm is a finite mapping (e.g. see [Sh]). The mapping x = po y/ : A —> p(D)

is a finite mapping as well. We can use

{/-wilZ T1 T rj-tZZ rr<2.2. -1

Y00 ' J 11 ' • • • ' 1mlm2 ' i22 ' ••• ' 1 m2m2>

as a homogeneous coordinate system in E. Let 77 be a hyperplane in E

given by the equation T^ — 0, and G = p(D) - 77. Since x~x(G) — A, the

restriction of x to ^l is a finite mapping; denote it by x '■ A —> G. One can

consider

iTiik/Too\k= l>2> i=l,---,mk}
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as a coordinate system in the affine space E - H = Cm . In this system the

mapping x nas the following representation

(3.3) (xx, ... , xn , yx, ... , yn) -> (x], ... , x2m¡, y2, ... , y2^).

Denote by C[A], C[B], and C[G] the rings of regular functions over A,

B, and G respectively. The mappings </> and x induce the embeddings of

C[B] and C[G] in C[A]. It enables us to identify the rings C[B] and C[G]

with their images in the ring C[A]. Then (3.2) and (3.3) imply C[G] c C[B].

Since x is finite, C[A] is a finitely generated C[C7]-module. Hence C[A] is a

finitely generated C[7?]-module and 4> is a finite mapping by definition.   D

Proposition 9. Let <f>: A —> B be an isomorphism between closed affine algebraic

subvarieties A and B in C". Let <f) coincide with the restriction of a linear

endomorphism 4>: C" —> Cn to A. Then 4> can be extended to a polynomial

automorphism of C".

Proof. Without loss of generality we suppose that the formula

(x)^(xx, ...,xm,0, ... ,0)

gives the mapping </>. Denote by x = (xx, ... , xm) the coordinate system in

the subspace Cm = {xm+x - ■ ■ ■ - xn = 0}, which contains B. The inverse

mapping <p~ coincides with the restriction of polynomial mapping x '■ Cm -*

C". Obviously, x must be given by the formula

X(x') = (xx,... ,xm,qm+x(x'),... ,qn(x')).

We set

a(x) = (xx,...,xn, xm+x - qm+x (x) ,...,X„- qn(x')).

The polynomial automorphism a of C" is what we need.   D

Denote by pm k : C2" —► C +m   (0 < m, k < n) the following projector

(x,y)^(xx,... ,xm,yx, ... ,yk).

Definition. Let <f>: A —> B be an isomorphism of closed affine algebraic subva-

rieties in Cn and T c C " be its graph. We shall say the triple (4>, A, B) is

an admissible one, if

(i) n>l = l(A).

(ii) for every m = 0, 1, ... , / the set Dm = pm ¡_m(Y) is a closed affine

algebraic subvariety in C .

(iii) the restriction pm ¡_m to Y is an isomorphism between Y and Dm.

Proposition 10. If a triple ((f), A, B) is admissible, then tf> can be extended to

a polynomial automorphism of C" .

Proof. By pm: C +1 —> C   and q: C +1 —> C   we denote the projectors killing

mth and (/+ l)th coordinates respectively.   Let Gm = pm /_m+1(r).   Then
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Gm c CM , pm(GJ = Dm_x, and q(Gm) = Dm . It easily follows from the

assumptions of the proposition that Gm is a closed affine algebraic subvariety in

C , and the restrictions of pm or q to Gm are isomorphisms between Gm and

Dm_x or Dm respectively. Let us consider C and C+ as linear subspaces

in Cn . Then we can extend pm and q to linear endomorphisms of C" . We

use the same notations pm and q for these endomorphisms. By Proposition 9,

there exists polynomial automorphisms ßm and ym suchthat ßm\Gm =Pm\Gm

and y \G = p IG . Set p = y o ß~l . Then p (D ) = D , , and

the automorphism p = px o ••• o pt maps 7)/ in 7>0. Proposition 9 shows

that there exist polynomial automorphisms n and v such that i/(7i) = D0

and v(^) = D¡ ■ Let a — v~l o p o n. This automorphism gives the desired

extension.   G

Recall that (x, y) - (xx, ... , xn, yx, ... , yn) is a fixed coordinate system

in C " = Cn®C" . By Fm (m = 0, ... , I) denote the space of linear mappings

of C " in C" with the first m coordinate functions depending on x only and

the rest of them depending on y .

Proposition 11. Let n < 1(A). Then there exists an algebraic subvariety Nm of

codimension 1 in Fm such that for every point ^eFm-iVffl the set B = P(A)

is a closed affine algebraic subvariety in C1, and the restriction of P to A is an

isomorphism A —» B.

Proof. For every P £ Fm we have

P(x, y) = (px(x), ... ,Pm(x),qx(y), ... ,q¡_m(x)),

where pi and <7; are linear functions. Let

v = {Px(txx,...,tnX) = ---=Pm(txx,...,tnX)

(3.4) =qx(tn,... , tn2) = ..- = q¡_m(tX2, ... , tn2) = t0Xt02 = 0}

be the subset in X (here (tok, ... , tnk) are the same as the beginning of this

section). Let Mm be the complex space of all subvarieties {V} given by equa-

tions of the type (3.4). Obviously, the correspondence P -> V gives the natural

bundle p: Pm —> M. By Proposition 8, it is enough to check the condition

(3.5) LlnV = 0

for every point of M, outside a proper subvariety. The complement of C " in

X is a union of Ex and E2, where Ek = {tok = 0} . Set Vk = V n Ek . Then

V = Vx u V2, and we can rewrite (3.4) in such a way

(3.6) (LAilEk)f)Vk = 0,        k=l,2.

ve restrict ourselv

the product

(3.7) Vx = vlxVx2,

Further we restrict ourselves to the case of k = 1. We can consider Fj as
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where Vx is the subspace of CP" ' = {txx : ••• : tnX] given by the linear

equations

pl(tn,...,tnl) = ---=pm(tn,...,tol) = 0,

and Vx   is the subspace CP" = {t02 : ■■•: tn2) given by the linear equations

qx(tX2,..., tn2) = ■■■ = q¡_m(tX2,..., tn2) = 0.

Thus we can identify the manifold M' of all submanifolds {FJ of the

type (3.7) with the product of Grassmanian manifolds Gr(« - 1, n - 1 - m) x

Gr(n, n-l+m). For every point a £ CP the codimension of the Shubert cycle

{A 6 Gr(k, s)\a £ A) is equal to k - s (e.g., see [GH]). Since dim7,4 n Ex <

I - 1, the codimension in of the subvariety {Vx £ M'\ V1 n LA n 7?, ^ 0} c M'

is more or equal than m + (I - m) + (I - 1) = 1 . Hence (3.6) holds for every

point of M', outside a proper subvariety.   D

Let W be the manifold of all the pairs of linear automorphisms of C" .

Proposition 12. Let (j>: A —> B bean isomorphism between closed affine algebraic

subvarieties of C" , and 1(A) < n. Then for every pair of linear automorphisms

(a, ß), outside a proper subvariety in W, the triple (a(A), ß(B), ß o <fi o a~')

is admissible.

Proof. Denote by F the space of linear endomorphisms of C2n with the first n

coordinate functions depending on x only, and the rest of them depending on

y . The manifold W is the complement in F of a proper algebraic subvariety.

Let t: F ~* Fm be the following projector

(pl,...,Pn,qx,---,qn)^(px,...,pm,qx,..., q,_m).

By Proposition 11, there exists a proper algebraic subvariety Rm c Fm such

that for every P £ Fm- Rm the subvariety B = P(A) is closed and P: A —> B

is an isomorphism. Hence for every pair (a, ß) £ W - \Jm T~'(7?m) the triple

(a(A), ß(B), ß o (f) o oT ) is admissible.   D

Propositions 10 and 12 give the proof of Theorem 1.

4. Example

It is natural to find out, if it is possible to improve the condition (1.1). We

shall show that for every n > 3 there exist isomorphic closed affine algebraic

subvarieties A and B in C" with 1(A) = n such that there is no polynomial

automorphism which maps A to B. We shall present an example for n = 3 .

For other dimensions examples are analogous. Consider the mappings pk: C —►

C3   (k = 1, 2) given by the formulas

px:t-*(t,t   ,t  ),

p2:t-+(t7 + tl\tll,t").
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As A and B we take the curves px(C) and p2(C) respectively. The mapping

<t>: (x,y, z) -> (x + x2,y, z)

gives a proper isomorphism (here (x, y, z) is a coordinate system in C ).

The curve A is invariant relative to an automorphism

yA: (x,y, z) -» (X1 x, Xny, Xl3z),

where X £ C*. This automorphism generates the mapping yx : t —* Xt in the

commutative diagram.

C ^^C

Assume there exists a polynomial automorphism /?' such that its restriction ß

to A is an isomorphism between A and B . The commutative diagram

C ^— C

B

defines the mapping ß . Since an isomorphism maps singular points to singular

points, ß(t) = Xt for some X £ C*. Thus for a — ß o yA_, , ¿(í) = t, and the

restriction of a to ,4 coincides with the mapping <j>. Therefore

a(x,y, z) = (x + x2 + px(x, y, z), y + p2(x, y, z), z + p}(x, y, z)),

where all {pk} vanish on A . It is easy to show that, if polynomial vanishes

on A , it does not contain monomials x, x , y, yx, z , and zx with nonzero

coefficients. Hence the Jacobian J(a) of the mapping a coincides with 1 +

2x + h(x, y, z), where the polynomial A does not contain monomial x with

a nonzero coefficient. This means the Jacobian is not constant and a cannot

be an automorphism.

In conclusion we would like to ask two questions. We do not know if it possi-

ble to improve the condition n > 2 dim A + 1 in the case of smooth subvarieties

and positive dim A .

We would like to find out if a smooth simply connected irreducible algebraic

curve in C3 can be mapped on a coordinate axis by a polynomial automor-

phism.
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