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AN INTEGRAL INEQUALITY

J. ERNEST WILKINS, JR.

(Communicated by R. Daniel Mauldin)

Abstract. We furnish conditions on the functions p(t), f(t), and g(t) that

are sufficient for the validity of the inequality, a S > y ß , in which a , ß ,

y , and S respectively, are the integrals over a measurable set E of p(t)g(t),

P{t)g2(t), p(t)f(t), and p(t)f2(t).

1. Introduction

In this paper we consider conditions that assure the validity of the inequality,

(1) a2o-y2ß>0,

in which

(2) a=  [ p(t)g(t)dt,        ß= [ p(t)g2(t)dt,
Je Je

y = f p(t) f(t) á,      ô= Í pit) f2 it) dt.
Je Je

In spite of its simplicity and its resemblance to the Tchebycheff inequality [4,

Theorem 10, p. 40], this inequality does not appear to have been discussed in the

standard treatises on inequalities [2-4]. Our interest in (1) was triggered by the

special case [6] in which E = (0, 1), pit) = t, git) = J0(vt), f(t) = t2j[¡(vt),

v is a fixed constant, and 70 is the Bessel function of the first kind and order

zero.

We always assume that E is a measurable set with positive measure, that the

real-valued function p(t) is integrable on E, and that the real-valued functions

g(t) and f(t) are bounded and measurable on E. Consequently, the four

integrals in (2) exist.

In §§2, 4 we prove the following two theorems, each of which states conditions

sufficient for the validity of (1).
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Theorem 1. The inequality (1) is true if

P(s)p(t)p(u)[g2(s){f(t) - f(u)}2 + g2(t){f(u) - f(s)}2

(3) + g\u){f(s) - f(t)}2 - f\s){g(t) - g(u)}2

- f\t){g(u) - g(s)}2 - f\u){g(s) - g(t)}2] > 0

a.e. on E = E x E x E. The inequality (1) is strict if'(3) holds a.e. on E and

is strict on a measurable subset of E whose measure is positive. Equality a.e.

on E   in (3) implies that

(4) ap(t)f(t) = yp(t)g(t)     a.e. on E;

this condition implies equality in (1), and in (3) // (a, y) ^ (0, 0).

Theorem 2. The inequality ( 1 ) is true if

(5) p(t)p(u){g(t)f(u) - g(u)f(t)}{h(u) - h(t)} > 0

a.e. on E  = E xE, in which h(t) = af(t) + yg(t). The inequality (1) is strict if

(5) holds a.e. on E and is strict on a measurable subset of E whose measure

is positive. Equality a.e. on E   in (5) occurs if and only if either (4) holds or

(6) h(t) = p    a.e. on E - Ex,

in which Ex is the subset of E on which p(t)f(t) — 0, p(t)g(t) = 0, and p is
a constant.

Because it may be cumbersome to test inequality (3), in §3 we give a series

of corollaries to Theorem 1 with progressively stronger hypotheses that are pro-

gressively easier to test. A similarly motivated corollary to Theorem 2 is given

at the end of §4. We note that neither Theorem contains an explicit hypothesis

on the sign of p(t). Finally, in §5 we analyze the special case mentioned in the

first paragraph. For this case we infer from Corollary 3 to Theorem 1 and from

Corollary 4 to Theorem 2 that (1) holds strictly when 0 < v < vx and when

0 < v < v2, respectively, in which vx ~ 1.0944 and v2 ~ 1.1668. The first of

these inferences is valid even if p(t) is replaced by an arbitrary integrable and

a.e. positive function.

2. Proof of Theorem 1

Fubini's Theorem and some simple manipulations show that

6(a2S - y2ß) = 6HIip(s)p(t)p(u)g(s)f(u){g(t)f(u) - g(s)f(t)}dsdtdu

F(s, t, u)dsdtdu,
JJJE6

in which

F(s, t, u) = 2p(s)p(t)p(u){g(s)g(t)f2iu) + git)giu)f2is) + giu)gis)f2it)

- f(s)f(t)g\u) - f(t)f(u)g2(s) - f(u)f(s)g2(t)} .

- JJL
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Because F is equal to the left side of (3), the assertions of Theorem 1 are now

obvious, except for the assertions in the last sentence.

It is clear that (4) is a consequence of (3) when (a, y) — (0,0). Assume

now that (a, y) ^ (0, 0) and that equality occurs a.e. on E   in (3). Then

(7) F(s, t,u)-0    a.e. on E , a ô -y ß = 0.

If we integrate the first equation in (7) with respect to / and u over E , we

find that

(8) p(s){a2f2(s) - y2g2(s) - 2ßyf(s) + 2aôg(s)} = 0    a.e. on E.

If 7 = 0, then a ^ 0, (5 = 0, and (8) implies that p(s)f (s) = 0 a.e. on E ;

this is sufficient to guarantee (4). A similar argument disposes of the case when

a = 0, 7^0. Henceforth we assume that ay ^ 0. Then it follows from the

second equation in (7) that we may define e as either aô/y or yß/a. We then

infer from (8) that

(9) P(s){af(s) - yg(s){{af(s) + yg(s) - 2e} = 0    a.e. on E.

We  define   7i2   as the  subset  of   E   on which  (9)  holds  and where

p(s){af(s) - yg(s)} t¿ 0. If measE2 — 0, then (4) is surely true. If meas7?2 >

0, if follows from (9) that

(10) f(s) = {2e - yg(s)}/a    onE2,

(11) p(s)f(s) = yp(s)g(s)/a    a.e. on E - E2.

For almost all (s, t, u) in E2x (E - E2) x (E - E2) the first equation in (7)

implies, with the help of (10), (11), and a little algebra, that

P(s)p(t)g(t)p(u)g(u){yg(s) - e}[y{g(t) + g(u)} - 2e] = 0.

Because p(s){yg(s)-e} = p(s){yg(s)-af(s)}/2 ^ 0 on E2 and measE2 > 0,

it follows that

(12) p(t)g(t)p(u)g(u)[y{g(t) + g(u)}-2e] = 0    a.e. on (E - E2)2.

Now define 7¿3 and EA as the subsets of E-E2 on which p(t)g(t) > 0 and

p(t)g(t) < 0, respectively. First we consider the case in which meas(7'3 +E4) =

0. Then p(t)g(t) = 0 a.e. on E -E2,it follows from (11) that p(t)f(t) = 0

a.e. on E - E2, and we infer from (2) and (10) that

(13) 2ay = [ p(t){af(t) + yg(t)} dt = 2e / pit) dt.
Je2 Je2

Therefore, e ^ 0, and it follows from the first equation in (7) after some algebra

that

g\s)[y{g(t) + g(u)} - 2e]

O4) + g(s)[y{g2(t) - 6g(t)g(u) + g2(u)} + 2e{g(t) + g(u)}]

+ 7g(t)g(u){g(t) + g(u)} - 2e{g2(t) - g(t)g(u) + g2(u)} = 0
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a.e. on E2. Suppose, if possible, that

(15) y{g(t) + g(u)}-2e = 0    a.e.onE¡.

An integration with respect to u over E2 then shows that

g(t) = (2e/y) - (meas7i2)     /   g(u)du    a.e. on E2,
Je2

so that g(t) = e/y a.e. on 7i2, f(t) = e/a a.e. on E2, af(t) = yg(t) a.e.

on E2. From this contradiction of the definition of E2, we infer that there

is a subset D of E2 such that measD > 0 and y{g(t) + g(u)} - 2e is either

positive, or is negative, a.e. on D. In either case, the result of an integration of

(14) over D shows that g(s) is a.e. on E2 a solution of a quadratic equation,

Ag +Bg + C — 0,in which A, B , and C are constants such that A^Q. If

this quadratic equation has unequal roots gx and g2, and if the subsets E5 and

E6 of E2 on which g(s) = gx and g(s) = g2, respectively, both have positive

measure, then the first equation in (7) would imply, for almost all (s, t, u) in

£jX E6x E6, that (gx - g2) (yg2 - e) = 0, even though neither factor is zero.

From this contradiction we infer that g(s) is constant a.e. on E2. It follows

from (10) that f(s) is also constant a.e. on E2, and (4) is a consequence of

the identity,

0= j p(s){af(s)-yg(s)}ds

= (af-yg)     p(s)ds+ p(s){afis)-ygis)}ds,
Je2 Je-e2

equation (11), and the implication of (13) that

[ p(s)ds¿0.
Je2

Now consider the case in which meas E3 > 0 or meas EA > 0. If we integrate

(12) over E3 or E4, we find that git) is a constant a.e. on 7s3 + E4. That

constant must be e/y , e^O by virtue of the definitions of £3 and EA. It then

follows from (11) that fit) = e/a a.e. on E3 + E4. For almost all (5, t, u) in

(Tj + E4) x E2x E2, the first equation in (7) now shows, with the help of (10)

and a little algebra, that

{ygit) - e){ygiu) - e}[y{git) - giu)} - 2e] = 0.

Because the first two factors do not vanish on 7s2, we see that (15) is true. A

repetition of the argument following (15) leads to a contradiction, from which

we infer that this case cannot occur.

This completes the proof that (4) is a consequence of equality a.e. on E

in (3).   Conversely, it is obvious that equality in (1) is a consequence of (4)

when (a, y) = (0, 0), and almost as obvious that equality in both (1) and (3)
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is a consequence of (4) when (a, y) # (0,0). This completes the proof of

Theorem 1.

3. Some corollaries to Theorem 1

We observe that the triple integral over E of the left side of (3) is the same

as

3 ¡¡j 3 P(s)p(t)p(u)[g2(s){f(t) - f(u)}2 - f2(s){g(t) - g(u)}2] dsdtdu.

The following corollary now follows at once from the proof of Theorem 1.

Corollary 1. The inequality (1) is true if

(16) Pis)pit)piu)[g2is){fit) - fiu)}2 - f2is){git) - giu)}2]>0    a.e. on e\

The inequality (1) is strict if (16) holds a.e. on E3 and is strict on a measurable

subset of E whose measure is positive. Equality a.e. on E in (16) implies (4),

and is implied by (4) if (a, y) jí (0, 0).

We next state the following corollary.

Corollary 2. Suppose that p(t) > 0 a.e. on E, that the subset of E on which

g(t) = g(u) is a null set, and that

egl(t,u)eA{f{t)-f(u)}2/{g(t)-g(u)}2]

> ess.l.u.b.seE[{f(s)/g(s)}2].

Then the inequality ( 1 ) is true, and is strict unless

(18) af(t) = yg(t)     a.e.onE,

in which case (1) is an equality, and (17) is an equality if (a, y) ^ (0, 0).

In order to prove Corollary 2, we first observe that g(s) ^ 0 a.e. on E and

that the left side of (17) is finite. Because p(t) > 0 a.e. on E, it follows that

(16) is a consequence of (17), and that the truth of (1) is assured by Corollary

1. Moreover, equality in ( 1 ) implies the existence of a constant p such that

(19) {f(s)/g(s)}2 = p = {f(t)-f(u)}2/{g(t)-g(u)}2    a.e.onE2.

A little algebra shows that f(t)f(u) = pg(t)g(u) a.e. on E . Multiplication by

p(u) and integration with respect to u over E yields the result that yf(t) =

pag(t) a.e. on E. A subsequent multiplication by p(t) an integration with
2 2

respect to t over E shows that y = pa . The validity of (18) when 7 == 0 is

now obvious. If y = 0, then either a = 0, in which case (18) is surely true, or

p = 0, in which case it follows from (19) that f(s) - 0 a.e. on E, so that (18)

is surely true. Finally, it is clear when (a, y) = (0, 0) that equality in (1) is a

consequence of (18); this conclusion is almost as clear when (a, y) ^ (0, 0).



350 J. E. WILKINS, JR.

Corollary 3. Suppose that E is the closed interval (a, b), in which a and b

are real numbers such that a < b, that p(t) > 0 a.e. on E, that f(t) and g(t)

are continuously differentiable on E, that g(t) ^ 0 on E, that g'(t) ^ 0 when

a < t < b, and that

(20) min[{/(x)/g'(x)}2] > max[{f(s)/g(s)}2].
x£E seE

Then the inequality ( 1 ) is true, and is strict unless

(21) f(t) = (7/a)g(t)     onE.

Because g'(t) ^ 0 when a < t < b , the function <p(t, u) defined so that

<p(t, u) = {fit - fiu)}/{git) - giu)}    when t + u,

4>(t, u) = f(u)/g(u)    whenr = w,

is lower semi-continuous on E . The function f(s)/g(s) is continuous on E.

We can now replace ess. g. 1. b. and ess.l. u.b. in (17) with min and max. The

inequalities (17) and (20) are equivalent because <j>(t, u) = f(x)/g'(x) for

some x between t and u. Corollary 3 is now a consequence of Corollary 2

and the observation that a ^ 0.

4. Proof of Theorem 2 and a corollary

The following calculation is sufficient to establish all of Theorem 2 except its

last sentence.

2(a2S - y2ß) = 2af p(t)g(t) dt f p(t)f2(t) dt - 2y í p(t)f(t) dt [ p(t)g2(t) dt
JE JE JE JE

= 2aUp(t)g(t)dt ¡p(u)f2(u)du- ¡p(u)f(u)du ¡ Pit)fit)git)á}

+ 2y{¡EP(t)g(t)dt¡EP(u)f(u)g(u)du-¡EP(u)f(u)du¡EP(t)g2(t)dt}

= 2¡¡2 P(t)p(u)g(t)f(u){h(u) - hit)} dt du

, P{t)piu){git)fiu) - giu)fit)}{hiu) - hit)} dt du.-IL
It is obvious when (a, y) = (0, 0) that equality a.e. on E in (5) is a

consequence of either (4) or (6); this conclusion is almost as obvious when

(a, y) ^ (0, 0). The converse is obvious when (a, y) = (0, 0). When (a, y) ^

(0, 0) and equality occurs a.e. on E2 in (5), an integration of (5) with respect

to u over E shows that

(22) P(t)g(t){aâ + yÇ- h(t)} - p(t)f(t){aÇ + yß- h(t)} = 0

a.e. on E, in which
r

C= / p(u)f(u)g(u)du.
Je
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When a = 0, y ^ 0 (or y = 0, a ^ 0), it follows from equality in ( 1 ) that

ß = o (or S = 0) and then from (22) that

(23) P(t){af(t) - yg(t)}{h(t) -p} = 0    a.e. on E,

if p = C ■ When ay ^ 0, the same conclusion is valid if p - e + Ç, in which

e = ar5/y = )Sy/a. We define E1 as the subset of E - Ex on which h(t) ^ p.

If meas7s7 = 0, then (6) is surely true, and if meas(7s - Ex - E7) = 0, then (4)

is surely true. Henceforth, assume that meas7i7 > 0, meas(7i - Ex - E7) > 0.

We then infer from (23) that af(t) = yg(t) a.e. on E7. If we multiply (5) as

an equality, by a and then by y, a little algebra shows that

p(t)g(t){h(t) - p}p(u){af(u) - yg(u)} = 0,

p(t)f(t){h(t) - p}p(u){af(u) - yg(u)} = 0

for almost all (t, u) in E7 x(E-Ex -E7). Because h(t) ^ p on E7, p(u) ^ 0

on E - Ex, and p(t)g(t) and p(t)f(t) cannot both vanish at any point t

in E - Ex, we conclude that af(u) = yg(u) a.e. on E - Ex - E7. Hence

af(u) — yg(u) a.e. on E - Ex . This is sufficient to prove (4), and to complete

the proof of Theorem 2.

Although the elementary concept of monotonicity for a single function is

meaningless for a general set E, we can say that the pair of measurable functions

h(t) and k(t) are "monotone in the same sense on 7s," or "similarly ordered,"

when

(24) {Ä(i)-Ä(«)}{jfc(0-Jt(a)}>0    a.e. on E .

This concept generalizes that defined in [4, p. 10] when E is an interval on the

real line, and has been used in [3, p. 168].

Corollary 4. Suppose that p(t)g(t) > 0 a.e. on E and that the functions h(t) =

a/(0 + 7^(0 and k(t) = f(t)/g(t) are monotone in the same sense on E. Then

the inequality (1) is true and is strict if (24) is strict on a measurable subset of

E whose measure is positive. Finally, equality a.e. in (24) occurs if and only if

either (21) holds a.e. on E or (6) holds a.e. on E.

The inequalities (5) and (24) are equivalent, because p(t)g(t) > 0 a.e. on E .

Moreover, a > 0, the equalities (4) and (21) are equivalent, and measTi^ = 0.

Now the corollary follows at once from Theorem 2.

5. A special case

If we rescale both the independent and the dependent variables in the special

case mentioned in § 1, it may be described as the case in which v is a positive

number, E — (0, v), f(t) = t Jq(í) , g(t) — J0(t), and p(t) is integrable and

positive a.e. on E. Then

(25a) f(t)<0    if0<t<j'x ~ 1.8412,

(25b) git) > 0    if 0 < t < jQ ~ 2.4048,

(25c) g'(t) = -Jx(t)<0    if 0<t<jx ~ 3.8317,
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in which j and j'n are the smallest positive zeros [1, pp. 409, 411] of Jn and

j'n, respectively, and Jn is the Bessel function of the first kind and order n .

Moreover, /'(/) = -t{J0(t) - tJx(t)} . Hence [1, p. 414] the smallest positive

zero of f(t) is vm ~ 1.2558, and

(25d) /(0<0    if0<t<vm.

It follows from (25) that (f2/g2)' = 2f(f g - fg')/g3 > 0 if 0 < t < vm , so
that

(26) max[{f(t)/g(t)}2] = if(v)/g(v)}2 = {v2 JÖ (v) / J0(v)}2
ÎÇ.E

if 0 < v < vm . Moreover, f/g' > 0 if 0 < t < vm and

(27) if/g')' = -2t - t{J2xit) - J0(t)J2(t)}/jf(t) < 0,

if 0 < t < jx , because [5, Equation (1), p. 152]

oo

72(0 - J0it)J2it) = iS/t2)^nJ2nit) > 0.
n=\

>\2i/
Therefore, {if/g'f}' = 2if / g')if / g')' < 0 if 0 < t < vm , and

(28)       min[{fit)/g'it)}2] = {fiv)/g'iv)}2 = v2[v - {J0iv)/Jx(«)}f

if 0 < v < vm . It follows from (26) and (28) that (23) is true when 0 < v < vm

if and only if {702(v) - 72(w)}<D(v) > 0, in which <D(u) = {Jxiv)/J0iv)} +

{J0(v)/Jx(v)} - 2v . We infer from the identity [5, Equation (14), p. 152],

OO

t;2{7>) + 72(t;)} = 4^(2« + l)J2n+x(v),
«=o

that Jq(v) > J2(v) when v2 < 2, so that (23) is true when 0 < v < vm

if and only if 0(f) > 0. We observe that lim^0+<P(?j) = +co, <&(vm) =

(l-v2J/vm<0,and

<D'fv) = -2- {J¡(v) - jf(v)f/{J0(v) + Jx(v)}J0(v)Jx(v)}2 < 0.

Therefore, (23) is true in the strict sense when 0 < v < vm if and only if

0 < v < vx , in which vx is the unique zero of O(v) such that 0 < i>, < vm .

We find that vx ~ 1.0944, and conclude from Corollary 3 that (1) holds when

0 < v < vx.

We have not been able to use Theorem 1 or any of its corollaries to improve

this result, even in the very special case when p(t) = t. On the other hand,

it follows from (25) that (f/g)'<0if0<t<jx. Hence the hypotheses of

Corollary 4 are satisfied if h'(t) = a fit) + yg'(t) < 0 when 0 < t < v < jQ,

or because a > 0 and g'(t) < 0 when 0 < t < v < j\ , if f(t)/g'(t) > -y/a
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when 0 < t < v < j'x . It follows from (27) that this last condition holds if and

only if

*(«) = {f(v)/g'(v)} + ¡vpit)fit) áI'¡\(t)g(t)dt > 0 .

It is easy to see that ¥(?;,) > 0 > *¥(vj and that ¥>) = {f(v)/g'(v)}' +

a~2G(v) a.e. when 0 < v < vm , in which

G(v)=p(v)g(v) f P(t)g(t)[{f(v)/g(v)} - {f(t)/g(t)}]dt.
Jo

Therefore, *¥'(v) < 0 a.e. when 0 < v < vm, and there is a unique v2 such
2 2

that vx < v2 < vm  for which ^(i^) = 0 ; moreover, a ô - y ß > 0 when

0 < v < v2 .

When p(t) = t, the equation defining v2 can be written in the form

JQ(v2) - 2v2Jx(v2) + 3J2(v2) = 0.

We find that u2~ 1.1668.
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