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ABSTRACT. Let f: R x R™ x R — Rm, f=f(e,x,t) bea Cz-mapping
l-periodic in ¢ having the form f(0, x, ¢) = Ax + o(|x|) as x — 0 where
A € Z(R™) has no eigenvalues with zero real parts. We study the relation
between local stable manifolds of the equation

x' =e-f(e,x,1), &>0issmall
and of its discretization
xn+| =xn +(8/m) .f(e, x,,a t"),
L=t +1/m,

where m € {1,2,...} = .# . We show behavior of these manifolds of the
discretization for the following cases: (a) m — o0, € = € > 0, (b) m —
00, e—0,(c)mokesS,e—0.

1. INTRODUCTION
Let us consider the equation
(1.1) x'=¢-fle,x, 1),
where f € C2(R x R™ x R, Rm) , f is l-periodic in ¢, and ¢ € R is a small
parameter. We assume that f has the form
fO,x,t)=Ax+ g(x, 1)

with hyperbolic 4 € Z(R™) i.e., A has no eigenvalues with zero real parts
and g(x,t) =o0(|x|) as x — 0. It is well known [5] that (1.1) has a 1-periodic
solution Z(e, ) for each small ¢ # 0 such that Z(¢,-) > 0 as ¢ —» 0. The
equation (1.1) has the discretization for each m € A/ \{1} =]

Xt =x,+(e/m)-f(e, x,,1t,),
by =t +1/m.

n

(1.2)

The purpose of this paper is to study the relation between (1.1) and its dis-
cretization (1.2). First we shall show (§2) the existence of an invariant curve of
(1.2) for small ¢ which tends to Z(g, -) as m — co. Then in §3 we investigate
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behavior of local stable manifolds of these invariant curves. We show that they
tend to the local stable manifold of Z(e, :) as m — oo for € > 0. The main
result of this paper is Theorem 3.6 where all possible cases regarding limit be-
havior of these manifolds are shown. Similar problems have been studied in [3,
4, 6]. Our method is directly related to [3].

2. INVARIANT CURVES

In this section we find invariant curves of (1.2) for & small and m € /",
m > 2. Let us consider the equation

&
x2=x,+—n;-f(e,xl,t)

€ 1
x3=x2+z-f(s,x2,t+—n;)

(2.1)

X, =X +i-f<sx t+m_2>
m m—1 m > m—1" m

€ m-—1
xl=xm+—n;-f(8,xm,t+—7n—>.

If x=(x,,...,x,), 4,X=(x,-Xx;,..., X, —X,), and

F,(e,x%,1)= (f(s,xl,t),...,f(s,xm,t+m—n_l—l>)

then (2.1) has the form

A %=L F (e,%,0.

m m m
Theorem 2.1. There is ¢, >0 anda C 1-mapping
z: M % (~¢y, &) x R— R"

satisfying
(i) z=z(m,e,t) is l-periodicin t, z(-,0,-)=0;
(ii) the sequence {z(m, &, t+(n/m)), t+(n/m)}>_ satisfies (2.1) i.e., the
set {(z(m, &, 1), )}, is invariant for the discretization (1.2);

(iti) lim, __ z(m,e,-)=7Z(e,) in the space C'((0, 1), R™).
Proof. We follow [2]. It is clear that Ker4, = {(x,, ..., x,), X, =---=x,}
and we define P, : (R™)" — (R™)" by
P ¥o X 4+ x, X, 4+ +x,
m m 3 sy m .
P, is a projection and our equation has the form:
(2.2) A, X = (¢/m)(I - P, )F,(e,X,1),

(2.3) 0=PF,(c,%,1),
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since (R™)" = Ker 4, ®Im A, . By [2] we know that (4, /Im4,)"|<c-m,
hence (2.2) has the form

(2.4) %, = (¢/m)B, (I - P,)F, (¢, X, +X,, 1)

and (1/m)- |B;1l[ < c, where X, € Ker4, , X, €Im4,, B, =4, /Im4, .
We notice that Ker4,, =Im P, and Im 4, = Ker P, . Further

| — 2 m-—1
;,me(a,x,t)v|=\/lef(a,xl,t)vll +---+|D f(e, x,,, t+ - )vm|2

<M-|v|, here M = ma D_f(e, w, t)|.
- [v] v e€(—1,1), |w|)<_(l, te(O,l)l xf( )
By using the implicit function theorem these facts imply that (2.4) has a unique
small solution X,(¢, m,X,,¢) for each small ¢, m € /], t € (0, 1), X,
bounded. Hence we obtain the bifurcation equation from (2.3):

0=P,F,(¢,X, +X,(t,m,X,,8),1),

i.e.,
1 & ;
1 —
(2.5) 0=—> fle, z+x(t, m, %, 8), 1),
i1
where X, = (z,...,z) € Kerd,, z € R™, X, = (x;,...,x;"). Since

X,(t,m,x,;,0) =0, f(0,0,¢) =0, and (2.5) has the form Az + (o(z) +
0(¢)) =0 as z — 0, ¢ — 0, we obtain a solution of (2.5) again by the implicit
function theorem and thus we have a solution (x]"(¢, €), ..., X, (t, €)) of (2.1)
uniformly for each & small, me ./, m>2,and t€ (0, 1).

Using the periodicity of f we obtain

x'(t, €)= x| (t+%,s> . X (t+1,8)=x](t,¢).
In the same way as we solved (2.1) we can see that x|"(-,-), Zx]'(-,),
ai:gxlm(-, -) are bounded on (—¢&, ¢,) x (0, 1) uniformly for m > 2.

Let us choose an arbitrary sequence {(m;, ¢;)}, such that m, — oo, ¢ —
€€ (—¢y, &), ¢#0. Then by (2.1)

m; 1 m; ¢; m;
X, (t-i-;,si =X, (t,.s,.)+g’~f(s,.,x1 (t,¢),10).

i i

Hence for some d; € (0, 1) by the mean-value theorem

o m( d 1 e - |
(—) Ex]";‘ (t+"—n'j‘.,8i>'W=—l"fj(8i’x;n’(t’8,'),t)s
1 1 ]
where zx;"" =Xy e Xp), f=(f),-., f5). Since x,(-, ), Zx,(,"),
and Z;x(-, -) are bounded on ] x (¢, &) x (0, 1), by the Arzela-Ascoli
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theorem {x{""(-, ¢;)}o has a convergent subsequence that tends to z(-) in

Cl((O, 1), R™) and moreover, we have from (—)
Z=¢e-fle, z,1), e#£0.

Utilizing the fact that (1.1) has a unique small 1-periodic solution for ¢ # 0 we
obtain the proof of Theorem 2.1. We have used the following evident argument:
Let X, Y be topological spaces and let f: D — Y be a mapping defined on
#DcC X. If forsome x € X, y € Y and each sequence {xi}8° c D such
that x, — x as i — oo, the sequence {f (xi)}g° has a subsequence tending to

y,then lim,_ f(z)=y.

3. INVARIANT MANIFOLDS

We investigate local stable manifolds of (1.1) and (1.2). Let 4 = diag(B, C),
where B € Z(R™), C € Z(R™) have positive, negative real parts of their
eigenvalues respectively. We note that (1.1) has the averaged equation

(+) x'=/olf(0,x,t)dt.

Theorem 3.1. Thereis 6 >0 anda C l-mapping
h: A x(0,0)xB;={veR™,|v|]<d} x R—R™
such that
(i) h=h(m,e,v,1t) is l-periodic in t;

(ii) the graph of h(m,e,-,-) in R™ x R is a local stable manifold of

{(z(m, &, 1), )} ep for (1.2);
(iii) let graph z, ,, graph z, be local stable manifolds of {(Z(e, t), t)},cx
for (1.1) and 0 € R™ for (+), respectively. Then
(a) l.imm—voo,e—»se(o,ti) h(m’ €,050) = zl,E’
(b) lim, . oh(m,e,-,)=72,
in the space C;(BaxR, R™)={he Cl(deR, R™), h=h(v, t) is 1-periodic
in t}. Here Z,(v, 1) = z,(v), z, € C*(B;, R™), z, ,€ C2(B; x R, R™).
Proof. (1.2) has the form
U, =u,+LBu, +:Lge,u,+v,,t)=u+=<fe, u+v,1,),
3.1) v, =v,+E£Cv, +Lge,u,+v,,t,)=v,+Zf(e,u,+v,,t,),

— 1
tn+l - tn +

Similarly as in [3] we can show the existence of a mapping A(m, ¢): B; x R —
R™ for some & > 0, uniformly for & >0 small, m € .#, such that
(i) h(m, €)(-, ) is 1-periodic in ¢ € R;
(ii) the graph of h(m, ¢) in R™ x R is a local stable manifold of the set
{(z(m, e, 1), 1)},cg for (3.1);
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(iii) D!D/h(m, &)(-,) is uniformly bounded on B; x (0, 1) for (m, &) €
A% (0, ¢y for i+j<2.

Since the graph of h(m, ¢) is locally invariant for (1.2), h = h(m, &) satisfies
on B; x R forsome 6, 0<d<d

(32) h(v+ &£ fy(e, h(v, ) +v, t), t+ L)=h(v, )+ £f (e, h(v, ) +v, 1).

Let us choose a sequence m;, — oo, ¢ — ¢ € (0,9). Then by the Arzela-
Ascoli theorem {h(m,,¢,)},” has a subsequence which tends to z in

Cpl(B(, x R, R™). On the other hand, it follows from (3.2) by the mean-value
theorem for some sj. , rj €(0, 1)
(3.3)
i €. i 1 j
h; <U+Flif2(8"’h Ww,t)+v,1),t+ ;) —h;.(v, 1)

1

i 1 i i &; i 1
=hj (v,1+ﬁ>—hj(v,t)+hj <v+;if2(si,h(v,t)+v,t),t+aj)

1 1

—h; (v,t+i)
m;

i i € i 1

=Dvhj (v+sj—n—1’:f2(8i,h (v,t)+v,t),z+;i)
i

& i i r. 1

.;’ifz(ﬁi,h(v,t)+v,t)+Dthj (v,t.g.m_fi) WI

e .
=ﬁl.fl’(ai,h'(v,t)+v,t),
i

where hi=h(m,.,si), hi=(h:,...,hjnl), 5 =(fll,...,f]""). Since &, — &,
m; — oo we have

(3.4) e-Dz(v,t)- fe,z+v,t)+D,z(v, t)=¢- fi(e, z+v, 1)

But this equation has a unique solution near 0 x R C R™ x R whose graph in
R™ x R is precisely the local stable manifold of {(Z(e, ), t)} (g - This follows
in the same way as in [3] from the two facts: first, a solution of this equation
is a locally invariant set of (1.1) and second, only the local stable manifold of
Z(e, ) is a graph of such a mapping near 0 x R C R x R.

Now we study a similar case when m; — oo, ¢, — 0. Then we modify (3.2)
and (3.3) in the following way using the mean-value theorem and the fact

Zh(v,t+i)—h<v,t+u)=0
; m m

i=1
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p i—1 i—1

(3.5) -fz(ap,h (v,l+ p )+v,t+ p” )
p p

Zfl( (v 141 1)+v t+l_1).
Ptl mP mp

Now we apply the following well-known result

Lemma 3.2. Let f: R — R" bea 1-periodic C"'-mapping. Then for each t € R

rr%l—lgong(t-*_—) / f(s)ds.

Hence from (3.5) we have

1 | S
/ szj(v,t)-f2(0,2+'v,t)dt=/ f{(O,z+v,z)dt.
0 0

Note that we assume that {h(m;, ¢;)},  has a subsequence which tends to z

in C; (B; x R, R™). On the other hand, it follows from (3.3) that z is
independent of ¢, since D,z =0. Thus z = z(v) and

1 1
(3.6) Dz('u)/o f2(0,z(v)+v,t)dt=/0 £0, z(v) + v, 1)dt.

We see that this equation and (3.4) are similar. Indeed, (3.6) is the equation
of the local manifold of 0 € R™ for the averaged equation of (1.1)

1
x' =/ f(0, x, t)dt.
0
This completes the proof of Theorem 3.1.
Remark 3.3. By the paper [3] we know that

limz, =7Z
e—0 1,e 2

in the space C; (B; x R, R™).
A case remains: ¢, — 0, m;, = m. If {h(m,¢)(-, )} tends to z in
C,(B; x R, R™) then by (3.2)
z(v, t+(1/m)) = z(v, 1),
i.e., z is (1/m)-periodic in ¢. It follows from (3.5) that

ifz(O z(v,t)+v, t+—l->
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i.e., the graph of z/B; x {t} is a local stable manifold of 0 € R™ of the
following equation, where now ¢ € R is a parameter

P i—1
(37) X——r;l—;f(o,x,t'{'?).
Hence we obtain

Theorem 3.4. {h(m,,¢;)}, tends in C;(Ba x R, R™) to the family of local
stable manifolds of 0 € R™ for (3.7) depending on t, as m; — m, ¢ — 0.

Let the family of local stable manifolds of 0 € R™ for (3.7) depending on
t is a graph of w, for some w, € C;(B5 x R, R™). We know that

iif(Ox t+u —Ax+ii (x t+i—_——1—>
me o m ) mi:lg ’ m )

From this it follows that we can derive w,, in a standard way [1, 3] uniformly
for m € ;. Moreover D,D/w, (-, ) are also uniformly bounded on Bj x
(0, 1) for i+j<2.

Utilizing this fact and Lemma 3.2 we obtain by the previous method

Theorem 3.5. lim,___w, =Z, (see Theorem 3.1) in C,(B; x R, R™).

Lastly, let /™ = 4] U{oc} be a compactification of .#;. Now we define a
mapping H: /" x (0, §) — CI: (B; x R, R™) for § > 0 sufficiently small in
the following way

h(m,e,-,-) for(m,e)et x(0,9),

H(. )= w, for (m,0), me A,
) 7y, for (00, &), €>0,
z, for (o0, 0).

Summarizing all the previous results we have the main theorem of this paper:

Theorem 3.6. The above defined mapping H: ¥ x (0, 6) — C,: (B; x R, R™)
IS continuous.

4. APPENDIX

To help the reader understand this paper we prove the result from [2] that
was used in the proof of Theorem 2.1; namely, that |(4,,/Im Am)_ll <c-m

for some constant ¢ and each m € .#; . We know that 4, : (R™)" — (R™)",
Tn‘
A X = (X, =X, .00, X —X,), xX=(X,...,X%,), X, €ER".

We have the scalar product on (R™)™

(x,») =Z(xi’ y,’)a
i=1
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where (-, -) is the standard scalar product on R™ . On the other hand, (4, x,
A,x)=(-B,x, x) where

B,x=(x,+x,-2x,..., X1t X = 2%, o, X X, —2X,,).
Lemma 4.1. The spectrum of B, is {—4 sin’ 2j,Jj= , [m/21}.
Proof. 1t is clear that B, x = bx if and only if x,, x,, ..., Xx,, is a periodic
orbit of the dynamical system
(4.1) X =(b+2)x,,, —x;, b<oO.

Without loss of generality we can assume that 77 = 1. The equation (4.1) has
a general solution in the form

(i) Cr1 +G,r), rl ,—(b+2)r ,+1=0, C, =C,, C; are complex
numbers, b #0, 4 _
(i) C,j+C, for b =0, (-1) - (C,j+C,) for b = -4, C, are real
constants.
Hence 0 € 6(B,,) and —4 € g(B,,) for m even. The case (i) is more difficult.
If Clr{ + Czri is an m-periodic orbit of (4.1) then

C,+Cy=Cir +GCyry, C,=C,#0
Cyry + Cyry = Crt ™ et

r{"—l, r2 -1
det{ i1 m+1 =0.
o =h, I —h

Hence

Thus
m m
(ry =1)-(ry, =1)-(ry,—r)=0.
Since r, #r,, r,-r,=1,weobtain r|'=r)' =1 and

2n . . . 2m . .
r1=cos—]+£~sm—1, j=0,...,m—-1,
where ;% = —1. Finally, by (i)
2
1
b=
r

1
=(1+c0522—nj+1-sin22—nj>
m m
cosz—n’—i singz‘ -2
mJ 1 mj
L 2T,
=—4. —J.
sin” - j

It follows from Lemma 4.1 that
(4, /ImA )" <1/ (2 sin E) <c-m

for some constant ¢ > 0.
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