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(Communicated by Kenneth R. Meyer)

Abstract. Let f:RxRmxR->Rm, f = f{e, x, t) be a C2-mapping

1-periodic in t having the form f{0, x, t) = Ax + o{\x\) as x —» 0 where

A e J¡?{Rm) has no eigenvalues with zero real parts. We study the relation

between local stable manifolds of the equation

x = e • f{e, x, t),        s > 0 is small

and of its discretization

*B+l =x„ + {e/m)-f{e,xn,tn),

'n+l=<n + l/m>

where m e {1,2,...} = jV . We show behavior of these manifolds of the

discretization for the following cases: (a)  m-»oo, e —» ë > 0, (b)  m —►

oo,  e —► 0 , (c) m -><:eyf, £—»0.

1. Introduction

Let us consider the equation

(1.1) X   =£•/(£, X, t),

where / e C2(R x Rm x R, Rm), / is 1-periodic in /, and e £ R is a small

parameter. We assume that f has the form

f(0,x, t) = Ax + g(x, t)

with hyperbolic A £ ¿f(Rm) i.e., A has no eigenvalues with zero real parts

and g(x, t) = o(\x\) as x -* 0. It is well known [5] that (1.1) has a 1-periodic

solution z(e, •) for each small e ^ 0 such that z(e, •) —> 0 as e —► 0. The

equation (1.1) has the discretization for each m £ yT\{l} = yfx

(l2) xn+l=xn + (e/m)-f(e,xn,tn),

t„+i = tn + V>»-

The purpose of this paper is to study the relation between (1.1) and its dis-

cretization (1.2). First we shall show (§2) the existence of an invariant curve of

(1.2) for small e which tends to z(e, •) as m —> oo . Then in §3 we investigate
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behavior of local stable manifolds of these invariant curves. We show that they

tend to the local stable manifold of z(e, •) as m —> oo for e > 0. The main

result of this paper is Theorem 3.6 where all possible cases regarding limit be-

havior of these manifolds are shown. Similar problems have been studied in [3,

4, 6]. Our method is directly related to [3].

2. Invariant curves

In this section we find invariant curves of (1.2) for e small and m £ yT,

m > 2. Let us consider the equation

X2 = Xl + J¿ • f(£ > Xl > 0

±     f{ —
3       2     m      V m

(2.1) ;

e     . ( m-2\
xm = xm-i + ñ-f{e>xm-i>t + -¿r)

e     . ( m - I
Xl   - Xrr,+-/      £ »   Xm ,   t H-1 m      m    ■>   y        m' m

If x = (xx, ... ,xj, Amx = (x2 - x,, ... , xx - xm), and

Fm(e,x,t)= \f(e ,xx,t),...,f[e,xm,t + ^~

then (2.1) has the form

AmX = -m--Fm(e>X>t)-

Theorem 2.1. There is e0 > 0 and a C -mapping

z : jfx x (-e0, e0) x R —> Rm

satisfying

(i) z — z(m, e, t) is l-periodic in t, z(-, 0, •) = 0;

(ii) the sequence {z(m, e, t + (n/m)), / + («/w)}^°oo satisfies (2.1) i.e., the

set {(z(m, e, t), t)}ieR is invariant for the discretization (1.2) ;

(iii) Hmm^oo z(m, e, ■) = z(e, •) in the space Cx((0, I), Rm).

Proof. We follow [2]. It is clear that KerAm = {(xx, ... , xm), xx — ■ • • = xm}

and we define Pm : (R™)"1 - (R™)m by

fxx + --- + xm xx + '" + xm
Px

m m

Pm is a projection and our equation has the form:

(2.2) Amx = (e/m)(I-Pm)Fm(s,x,t),

(2.3) 0 = PmFJe,x,t),
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since (Rm)m = KerAm®ImAm. By [2] we know that \(Am/lmAm)~x\ < c-m ,

hence (2.2) has the form

(2.4) x2 = (e/m)B-x(I-Pm)FJe,xx +x2,t)

and (l/m) ■ \B~X\ < c, where xx £ KerAm , x2 £ lmAm , Bm = Am/lmAm .

We notice that K.erAm = ImPm and Im Am = KerPm . Further

^xFm(e,x,t)v\ = ^\Dxf(^,xx,t)vx\2 + --. + \Dxf(e,xm,t+r^^vm\2

<M-\v\,    where M = max \Drf(e, w, t)\.£€(-1,1),   M<1,   (€(0,1)       x

By using the implicit function theorem these facts imply that (2.4) has a unique

small solution x2(t, m,xx,e) for each small s, m £ yfx, t £ (0, I), xx

bounded. Hence we obtain the bifurcation equation from (2.3):

° = PmFm(e>xi +X2^> m,xx,e),t),

i.e.,

1   m

(2.5) 0 = —22f(&>z + x2(t,m,xl,e),t),
i=l

where xx = (z,...,z) e KerAm, z £ Rm, x2 = (x2, ... , x2). Since

x2(t, m, xx, 0) = 0, f(0, 0, t) = 0, and (2.5) has the form Az + (o(z) +

0(e)) = 0 as z->0, e —► 0, we obtain a solution of (2.5) again by the implicit

function theorem and thus we have a solution (x™(?, e), ... , x"^(t, e)) of (2.1)

uniformly for each e small, m£jV, m > 2, and t £ (0, I).

Using the periodicity of / we obtain

xi (t,e) = xx  I t -\-, e 1 ,        xx (t + 1, e) = xx (t, e).

In the same way as we solved (2.1) we can see that x¡"(-, •),   |^x["(-, •),

a:¡"(-, •) are bounded on (-e0, e0) x (0, 1) uniformly for m>2.

Let us choose an arbitrary sequence {(mi, e(.)}0   such that m, -» oc, e;

e £ {-e0, e0), e ^ 0. Then by (2.1)

x?' (? + ¿T'£') = X™'{U e'] + mt '/{e" X"l{t' e'ht)-

Hence for some d'. e (0, 1) by the mean-value theorem

Ill 1

where xg' = (xfl ,..., x^), / = (/,, ... , /-).  Since x'x(-, ■),  §¡x¡(-, ■),

and fix\(-, •) are bounded onijx (-e0, e0) x (0, 1), by the Arzela-Ascoli
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theorem {x["'(-, fi,-)}^ has a convergent subsequence that tends to z(-) in

C ((0, I), Rm) and moreover, we have from (-)

z'= e-f(s, z,t),        e^O.

Utilizing the fact that (1.1) has a unique small 1-periodic solution for e ^ 0 we

obtain the proof of Theorem 2.1. We have used the following evident argument:

Let X, Y be topological spaces and let f:D-*Y be a mapping defined on

0/ocI. If for some x £ X, y £ Y and each sequence {x^ c D such

that xJ. —► x as / —» oo , the sequence {f(xi)}0x has a subsequence tending to

v , then limz^jc f(z) = y .

3. Invariant manifolds

We investigate local stable manifolds of ( 1.1 ) and (1.2). Let A = diag(5, C),

where B £ ¿z?(Rm>), C £ Sf(Rm2) have positive, negative real parts of their

eigenvalues respectively. We note that (1.1) has the averaged equation

( + ) x = f f(0,x,t)dt.
Jo

Theorem 3.1. There is a > 0 and a Cx-mapping

-,'«
h:yfxx(0,S)xBs = {v £ R 2 ,\v\<ô}xR^ R"

such that

(i) h = h(m, e, v , t) is I-periodic in t ;

(ii) the graph of h(m, e, -, •)   in Rm x R  is a local stable manifold of

{(z(m,e,t),t)}ieRfor (1.2);

(iii) let graph zx e, graph z2 be local stable manifolds of {(z(e, t), t)}t€R

for (1.1) and 0 £ Rm for (+), respectively. Then

(a) fim^oo.^o.i)^. «»•»•) = zi,ê'

(b) lim^^ E^0h(m,e,-,-) = z2

inthespace Cxp(BgxR, Rm>) = {h £ Cx(BsxR, Rm<), h = h(v , t) is l-periodic

in t} . Here z2(v , t) = z2(v), z2 £ C2(BS , Rm'), zXe£C2(BsxR,Rmi).

Proof, (i.2) has the form

Un+l =Un + tBUn + Í¡8l(S >Un + Vn> '«) = Un + £A (£ ' Un + Vn > Ü >

(3.1)    vn+x =vn + ±Cvn + ±g2(e,un + vn, tn) = vn + ±f2(e,un + vn, tn),

t ,, = t + —.
n+l n       m

Similarly as in [3] we can show the existence of a mapping h(m, s): Bjx R —>

Rm' for some S > 0, uniformly for e > 0 small, m £ yfx such that

(i) h(m, s)(-, •) is l-periodic in t £ R;

(ii) the graph of h(m, e) in Rm x R is a local stable manifold of the set

{(z(m, e, t), t)}teR for (3.1);
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(iii) D'vDJth(m, e)(-, •) is uniformly bounded on Bjx (0, 1) for (m, e) £

jVxx(0, e0) for i + j <2.

Since the graph of h(m, e) is locally invariant for (1.2), h = h(m, e) satisfies

on Bs x R for some 5 , 0 < ô < ô

(3.2) h(v + £/2(e, h(v, t) + v, t), t + i) = h(v, t) + ±fx(e, h(v, t) +v, t).

Let us choose a sequence ml■ —> oo, st, —> e £ (0, ô). Then by the Arzela-

Ascoli theorem {h(m¡., e,)}^ has a subsequence which tends to z in

C (B& x R, Rm'). On the other hand, it follows from (3.2) by the mean-value

theorem for some s'j, r'j £ (0, 1 )

(3.3)

hj (v + ^-f2(ei, h\v ,t) + v,t),t+^- h'j(v , t)

=hj(v't+ér)~ h'i{v ' °+hJ {v + mf^e' 'hi{v ' °+v 't] ' '+¿)

-AÎ. (u,r+ — )

= DWA¡ ft; + ¿^-f^, h'(v, t) + v, t), t + — )
v J \       J mi ¿   l mj

e ( r1. \     t
• -l-Me,, h'(v ,t) + v,t) + Dth\ \v , t + -L

m¡        ' V mi I     mi

= -^--fJx(Ei,h'(V,t)+V,t),

where hl = h(mi,ei), h' = (h\, ... , h'm), fx = (fxx , ... , f™1). Since e(. ->e,

m¡; —» oo we have

(3.4) s-Dvz(v, t)-f2(e,z + v, t) + Dtz(v, t) = e ■ fx(e, z+ v , t).

But this equation has a unique solution near 0 x R c Rm x R whose graph in

Rm x R is precisely the local stable manifold of {(z(e, t), t)}teR ■ This follows

in the same way as in [3] from the two facts: first, a solution of this equation

is a locally invariant set of ( 1.1 ) and second, only the local stable manifold of

z(e, •) is a graph of such a mapping near 0 x R c Rm x R.

Now we study a similar case when m( —► oo, ej. —► 0. Then we modify (3.2)

and (3.3) in the following way using the mean-value theorem and the fact

£a(m+¿Va(v>í+¿^í)=°
¡=i
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tí     V   mp        mp) mP

(3.5) .f2(e .hp(v,t+l^-)+v,t+l
m„   I m„p J p

mph   \p  ' \       mP J mP )

Now we apply the following well-known result

Lemma 3.2. Let f:R—>Rn be a l-periodic Cx-mapping. Then for each t£R

lim —yf(t+—1-)= [ f(s)ds.
m^oo m^-f    \        m  J     Jo

Hence from (3.5) we have

Í Dvz (v , t) ■ f2(0, z + v,t)dt= f fJx(0, z + v,t)dt.
Jo Jo

Note that we assume that {h(mt, fi,-)}^ has a subsequence which tends to z

in  CX(BS x R, R™1).   On the other hand, it follows from  (3.3)  that  z  is

independent of t, since Dtz = 0. Thus z — z(v) and

(3.6) Dz(v) [ f2(0,z(v) + v,t)dt= [ fx(0,z(v) + v,t)dt.
Jo Jo

We see that this equation and (3.4) are similar. Indeed, (3.6) is the equation

of the local manifold of 0 G Rm for the averaged equation of (1.1)

x = i f(0,x, t)dt.
Jo

This completes the proof of Theorem 3.1.

Remark 3.3. By the paper [3] we know that

limz, . = z,
e^O    '■« 2

in the space C (Bg x R, Rm' ).

A case remains:   ej. —► 0,  mi = m.   If {h(m, e;)(-, -)}£° tends to  z in

Cx(BsxR,Rm<) then by (3.2)

z(v,t + (l/m)) = z(v, t),

i.e., z is (l/w)-periodic in /.It follows from (3.5) that

lA'/. ',     . /-1i /
DvZ(V>t)--Y,f2[°> Z(v,t) + V,t +

i=l        ^

= —JlA (o,z + v,t+1—)
m *rf     \ m  J
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i.e., the graph of z/Bs x {t} is a local stable manifold of 0 e Rm of the

following equation, where now t £ R is a parameter

0.7) x<=-y:/(o,*,(+izA).
(=1

Hence we obtain

Theorem 3.4.   {h(mt, e,-)}^  tends in C (Bs x R, R™1) to the family of local

stable manifolds of 0 £ Rm for (3.7) depending on t, as mi —> m, e¡ —» 0.

Let the family of local stable manifolds of 0 £ Rm for (3.7) depending on

t is a graph of wm for some wm £ C2(BS x R, Rm<). We know that

— >   f[0,x,t+-)=Ax + — >   gx,/+-   .
i=i     v ' i=i     x '

From this it follows that we can derive wm in a standard way [1,3] uniformly

for m £ Jfx. Moreover D'vDJtwm(-, ■) are also uniformly bounded on B¿ x

(0, 1) for i + j<2.

Utilizing this fact and Lemma 3.2 we obtain by the previous method

Theorem 3.5.  lim^^^ wm - z2 (see Theorem 3.1) in Cxp(Bs x R, Rm').

Lastly, let JV* = JVX U {oo} be a compactification of y^ . Now we define a

mapping H: Jf* x (0, 8) —> C (B¿ x R, R™1) for ô > 0 sufficiently small in

the following way

' h(m ,£,-,-) for (m, e) £ J^ x (0, Ô),

wm for (m,0),  m £J/X,

zlg for (oo, £), £ > 0,

z2 for (oo, 0).

Summarizing all the previous results we have the main theorem of this paper:

H(-,-) =

Theorem 3.6. The above defined mapping H: Jf* x (0, 8) —> C (Bs x R, R™1)

is continuous.

4. Appendix

To help the reader understand this paper we prove the result from [2] that

was used in the proof of Theorem 2.1; namely, that \(Am/\mAm)~ \ < c • m

for some constant c and each m £ JVX . We know that Am : (Rm)m -> (Rm)m ,

A.mX = \X2 — Xx , . . . , Xx — Xm) , X = (Xx , . . . , Xm) ,   X- £ K   .

We have the scalar product on (Rm)m

(x,y) = ̂ 2(xi,yi),
i=i



1112 MICHALFECKAN

where (•, •) is the standard scalar product on Rm . On the other hand, (Amx,

Amx) = (-Bmx, x) where

"mX = (X2 + Xm ~ 2XX , .. . , X¡+x + X¡_x — 2X¡ , . .. , X, + Xm_x — 2Xm).

Lemma 4.1. The spectrum of Bm is {-4 sin * • j, j = 0, ... , [m/2]}.

Proof. It is clear that Bmx = bx if and only if xx,x2, ... ,xm is a periodic

orbit of the dynamical system

(4.1) xi+2 = (b + 2)xM-Xi,       b<0.

Without loss of generality we can assume that m = 1. The equation (4.1) has

a general solution in the form

(i) Cxr\ + C2r2, rx 2 - (b + 2)rx 2 + 1 = 0,  Cx — C2,  Ci are complex

numbers, b ± 0, 4

(ii) Cxj + C2 for b = 0,  (-l)j • (Cxj + C2) for b = -4,  C;.  are real

constants.

Hence 0 e o(Bm) and —4 £ o(Bm) for m even. The case (i) is more difficult.

If CxrJx + C^ is an m-periodic orbit of (4.1) then

Cx + C2 = Cxr\m + C2r2 ,        Cx = C2¿0

C        i   c C   m+1 -L c    m+1

Hence

Thus

rf - 1, r,m - 1
m+1 m+1

r,     -rj,    r2     -j

(r^-l).(r2m-l).(r2-r1) = 0.

m m
Since rx ^ r2, rx • r2 = 1 , we obtain rx  — r2 — 1 and

2n .     .    .   2n . n
cos — / + ' • sm — ;. ; = 0,...,m-l,

m m   '
2

where z  = -1. Finally, by (i)

¿-i-2
ri

2?z 2^
1 + cos 2—/ + i • sin 2—j

m m

2n .     .    .   2n .
cos — / - i • sin —j

m m

.    . 2 n .
— -4 ■ sin  —/.

m

It follows from Lemma 4.1 that

|(^m/Im^m)-'<l/(2.sin^)<c./n

for some constant c > 0.
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