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TWO-BRIDGE LINKS WITH UNLINKING NUMBER ONE

PETER KOHN

(Communicated by Frederick R. Cohen)

Abstract. Three conditions equivalent to a two-bridge link having unlinking

number one are given. As a corollary it is shown that an unknotting crossing

appears in the minimal diagram of a two-bridge knot or link. In addition, the

absolute value of the linking number of the components is computed for all

unlinking number one two-bridge links.

1. Introduction
■a

Let L be a one- or two-component link in S . The unlinking (or unknot-

ting) number u(L) of the link L is the minimal number of crossing changes

necessary to convert L into a trivial link (or knot), where this minimum is

taken over all diagrams of L. Now, let L = S(p, q) be the two-bridge link

whose two-fold branched cover is the lens space L(p, q), where p and q are

relatively prime and p is positive. The number of components of L corre-

sponds to the parity of p [Sieb]. When p is even, L has two components, for

p odd, L is a knot. We write

- = [a0,ax,...,ar],

where [a0, ax, ... , ar] denotes the continued fraction

1
a0 +

ax +
1

a2
a-,+ -.3+--.+   1

a
r

Let C(a0, ax, ... ,ar) — 1*.a0ax ...ar as in Conway's notation [C] for a di-

agram of a two-bridge link. S(p, q) and S(p', q) are equivalent (i.e., iso-

topic) as links if and only if p = p and q = q mod p [S]. Furthermore,

C(a0, ax, ... , ar) and S(p, q) are equivalent if

- = [a0,ax,...,ar].
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Herein we prove the following:

Theorem 1. For L a nontrivial two-bridge link, the following are equivalent:

(i)   u(L) = l;

(ii)  There exist relatively prime integers m and n such that L is equivalent

to S(2n2, 2mn± 1);

(iii)   L can be expressed as C(a0, ax, ... , ak, ±2, -ak , ... , -ax, -a0) ;

(iv)   L can be expressed as either

*■* \^0 '    1 ' * "." '    r—l > ̂ r '     '      ' ^r '    r— 1 » * " " '    1 ' ^0' *""

C- (.Cq , Cj , . .. , cr_j , c^       1 ,  1 , 1 , Cf , Cr_x , . • • , Cj , CqJ ,

w/icTe c; > 1 ybr ¿ = 0, 1, ... , r and cr>2.

Kanenobu and Murakami [KM] proved the analogous theorem for two-bridge

knots:

Theorem 2. For K a nontrivial two-bridge knot, the following conditions are

equivalent:

(i)   u(K) = 1 ;

(ii)  There exist an odd integer p and relatively prime integers m and n

with 2mn = p ± 1 and K is equivalent to S(p, 2n ) ;

(iii)   K can be expressed as C(a0, ax, ... , ak, ±2, -ak , ... , -ax ) .

A similar fourth condition may be added to Theorem 2:

(iv)   K can be expressed as one of the following, or its mirror image:

C- [Cq , c j, ... , Cf_ x, c r, i, i, Cr     i, Cr_ i, ... , c, j or

C- (Cq , Cj , . . .   , Cf_ x, Cr      1 ,  1 , I , Cf , Cr_ j , ...  , cx ) ,

where ci > 1 for i = 0, 1, ... , r and cr>2.

Remark. The advantage of this condition is that this diagram for S(p, q) can

be calculated using the standard Euclidean algorithm. This diagram will be

alternating and therefore minimal [Mu]. A knot or link with unknotting number

one may be recognized from this diagram alone. In addition, the unknotting

crossing appears in this diagram.

This paper is organized as follows. In §2 we establish some terminology and

prove several lemmata concerning unlinking two-component links and surgery
2 1

on S xS" . In §3 we discuss continued fractions via the Euler bracket function.

The proof of Theorem 1 is found in §4.

I would like to thank Professor Cameron McA. Gordon for his helpful com-

ments and suggestions in the preparation of this paper.

2. Preliminaries

Let N(K) be the regular neighborhood of the knot K in a closed orientable

3-manifold M, with p a meridian of N(K). Let X be the exterior of K in
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M, that is,

X = M - int N(K).

Now, let M(r) denote the closed manifold obtained by attaching a solid torus,

V, to X so that a curve of slope r on dX bounds a disk in V. Here the slope

indicates the isotopy class of a nontrivial simple closed curve in dX. We shall

say that M(r) is the result of r-surgery on K in M. For two slopes r and s

in dX, let A(r, s) be their minimal geometric intersection number. We shall

use ML to denote the two-fold covering of S   branched over the link L.

Lemma 3. // L is a link with two components and u(L) = 1, then ML  is
1 1

obtained by r-surgery on some knot in S  x S   , where A(r, p) = 2 .

Proof. This follows immediately from two facts. The proof of Lemma 1 of [L]

explains the case of knots having unknotting number one. We combine this with

the fact that the double branched covering of S along a trivial two-component

link is S2 x Sx .   D

Throughout the proof of the following lemma we adopt the notation and

terminology of [JN]. The Seifert invariants for a Seifert fibration have the form

M(g;(ax,ßx),(a2,ß2),...,(am,ßm)),

where g is the genus of the orbit surface, F , and m is the number of surgery

instructions used to obtain the Seifert fibered manifold from the genuine S -

bundle over F. Our convention shall be that when g is nonnegative, F is

orientable, while g negative implies that F is nonorientable ( F = #\gJx RP ).

Each pair (a¡, ßt) specifies a particular surgery. If each a¡ is nonzero, we

obtain a true Seifert fibered manifold. However, if a. = 0 for some i, we

obtain a "generalized" Seifert fibered space. ■y i
We shall be using the fact that the only true Seifert fibrations for S xS are

of the form M(0 ; (a, ß), (a, -/?)). The fundamental group of an arbitrary

Seifert manifold may be calculated from its invariants. Using such calculations,

we find that for nx(M) to be Z, the invariants must be as stated above. When
2 1 2 1

S xS is fibered as above we say that S xS is fibered by (a, />)-torus knots

or (a, /?)-curves.

Lemma 4. Let K be a knot in S2 x Sx and let M = S2 x Sx - N(K). If M is
■y i

Seifert fibered, then K is an ordinary fiber in some Seifert fibration of S  x S .

Proof. Let V be a solid torus with meridian p. By hypothesis M is Seifert

fibered and S xS i% the union of M and V along the boundary. There are

two cases to consider. Either p is identified with a fiber of M or it is not.

When p is not identified with a fiber, the fibration of M extends to V [Seif].

The core of V is isotopic to K in S xS . K is a fiber in this fibration. Even

if K is an exceptional fiber, we may re-fiber S   x S   as a trivial S -bundle
2

over S   so that K is isotopic to an ordinary fiber.
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When p is identified with a fiber, we have a generalized Seifert fibration of
2 1

S xS . We claim that the orbit surface F must be nonorientable. To see this,

assume that F is orientable. The first homology of an orientable generalized

Seifert fibered manifold with an orientable orbit surface is

G = (Ax,Bx,...,Ag,Bg,Qx,...,Qm,H\aiQi + ßiH = 0,  i=l,...,m,

Ql+-- + Qm = 0)

= Z2g®(Qx,...,Qm,H\ %Qt + ßtH = 0, i = 1,... , m,

Ql + --- + Qm = 0).

Here, since M U V = S2 x Sx and G = Hx (S2 x Sx ) = Z we must have that

g = 0. Furthermore, since M is Seifert fibered, we may assume without loss

of generality that a, ^ 0 for i = 1, ... , m - 1 and that am = 0, ßm = 1 (that

is, the mth surgery on the trivial S -bundle sends the meridian to the fiber).

Thus the relation amQm + ßmH = 0 gives us H = 0. The group

G^(Qx,...,Qm\aiQi = 0, i = 1,..., m - 1, Ql + ■•■ + Qm = 0),

or simply,

G^(Qx,...,Qm_x la.Ö^O, ¿=l,...,m-l).

Since q(. ̂  0 for i = I, ... , m - I, the group G = Z is finite. This contra-
2 1

diction tells us that S x S cannot be obtained in this manner and hence F

must be nonorientable.

The first homology of an orientable generalized Seifert fibered manifold with

a nonorientable orbit surface is

G = (AX,...,A      Qx,...,Qm,H\aiQi + ßiH = 0,  /=!,..., m

2H = 0, Qx+--- + Qm + 2AX+--- + 2Alg¡ = 0).

Again, without loss of generality, a( ^ 0 for i = I, ... , m - I and am = 0,

ßm = 1. Again H = 0 and we get

G^(AX,..., A]g] ,Qx,...,Qm\ atQt = 0,  / = 1, ... , m - 1

Ô, +••• + Qm + 2AX +... + 2A]gl = 0)

= (Ax,...,AM,Qx,...,Qm_x\aiQi = 0,  i = I, ... , m - I)

= Z^®(Qx,...,Qm_x\alQl = 0,  i=l,...,m-l).

Since we know that G = Z and the remaining a(. 's are nonzero we must

have g = -I and ax = a2 = ■■■ = am_x = 1. In terms of this generalized

Seifert manifold construction, we have

S2xSl   =M(-l;(l,ßx),...,(l,ßm_x),(0, 1)).

But whenever qj. = 1 the corresponding surgery does not add a new exceptional

fiber. Therefore,

S2 xSX   =A/(-l;(0, 1)).
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Figure 1. A twisted S bundle over a Möbtus band

is homeomorphic to S xS minus a regular neighbor-

hood of a (2, 1)-torus knot.

Let us consider M(-l; (0, 1)) for a moment. We are attaching the solid torus,

V, to a twisted S '-bundle over a Möbius band, so that a meridian is identified

to a fiber. Another way of viewing this twisted Sx -bundle is as a twisted annulus

bundle over a circle. (See Figure 1.)

As we travel around the S '-factor the boundary components become inter-
2 I

changed. From this viewpoint we see that this is S x S minus a regular

neighborhood of a (2,l)-torus knot. This regular neighborhood is V, and its

core .if is therefore a (2, l)-torus knot. The fibers of M, from the fibration

M(-l ; (0, 1)), are parallel circles on the annuli.   However, we may re-fiber
2 1

S  x S   so that K is an ordinary fiber. That is,

M(-l;(0, l))^M(0;(2, I), (2,-1)).

Thus we have our result.   D

Lemma 5. If L is a two-bridge link and u(L) = 1, then for some Seifert fibering
2 1

of S xS , ML is obtained by r-surgery along an ordinary fiber, where A(r, p) =

2-

Proof. From Lemma 3 we know that ML is obtained by r-surgery on some

knot K in S2 xSx , where A(r,p) = 2. Let M = S2 x Sx - N(K).

M(p) = S2 xSx    and   nx (S2 x Sx ) = Z.

M(r) = ML    and   nx(ML) = Zq

since ML is the lens space L(q, p) for L = S(q, p). By the Cyclic Surgery

Theorem [CGLS] this is impossible unless M is Seifert fibered. Lemma 4

implies that K is an ordinary fiber in some Seifert fibration.    D

Before stating the next lemma, we establish some additional notation. Let

T — Sx x D with p and k denoting a standard meridian and longitude,

respectively, on dT. Let Cp c T be a (p, q)-curve on W = S x \D . For

nontriviality q > 2.   T has a Seifert fibration in which C      is an ordinary
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fiber. Let A be a 0-framed tubular neighborhood of Cp in Sx x D2. For

r a slope on dN, using the usual meridian-longitude coordinates, r = s/t £

Qu{oo},with s and t relatively prime.

Let V be another solid torus with meridian pv . Identifying d V with dT

so that pv is attached to p results in S  x S , the fibration of T extends to
2 1

all of S  x S , the Seifert invariant being M(0 ; (p, q), (p, —q)).

In the following lemma we will be performing r-surgery along an ordinary
2 1

fiber of S x S as described above. Again, we will use M(r) to denote this

manifold.

Lemma 6.

m[r>-\L(tq2,s) ifs = tpq±\,
y

and otherwise is a Seifert fiber space with orbit surface S and 3 singular fibers

of multiplicities q, q, and \tpq - s\.
2 1

Proof. Let Y = S xS - N. Y is Seifert fibered with orbit surface a disk and

2 singular fibers of multiplicity q. Ordinary fibers on dN are (pq , l)-curves.

If r jí pq, the Seifert fibration extends to M(r). The orbit surface is S .

There are 2 or 3 singular fibers; the original two, both of multiplicity q, and

possibly a third of multiplicity \tpq - s\. This is the intersection number of

an (s, i)-curve with a (pq, l)-curve on dN. If \tpq - s\ > 1, there are three

singular fibers.

When tpq-s = ±l there are only two singular fibers. To calculate M(r) in

this instance we shall begin with T, perform the surgery along C and then

attach V . We know that the surgery on T results in another solid torus [G].

To calculate M(r) we need only find the image of p after the surgery. These

surgeries correspond to Dehn twistings along an annulus bounded by C and

a (p, q)-curve on dT. A standard meridional disk is punctured q times by

C      . At each puncture an integral twist adds p copies of p and q copies

of k to p. Thus after ±t twists p has become (1 ± tpq)p + (tq )k. Hence

M(r) is homeomorphic to the lens space L(tq , s), since we are assuming that

tpq - s = ±1 .

Finally we must calculate M(r) when r = pq . Recall W = Sx x ¿D c T.

C isa (p, <?)-curve on W. Y is the union of the solid tori WuAZ, where

Z is a collared V , and A is an annular neighborhood of a (p, q)-curve on both

dW and dZ . Also, dA is a pair of ordinary fibers, (pq, l)-curves on dN.

These curves separate dN into two annuli Aw and Az where Aw c dW

and Az c dZ . M(r) = (WUAZ)UV. Since r = pq, dN and dV are

being identified in such a way that every fiber on dN bounds a disk in V.

In particular, dA bounds two disjoint disks Dx and D2 in V. These disks

divide V into two 3-balls Bw and Bz , chosen so that the 2-sphere AöDx \JD2

separates M(r) into W u Bw and Z u Bz . Bw is attached as a 2-handle to

W along Aw . Thus W U Bw is a punctured L(q, p). Similarly, Z U Bz is

also a punctured L(q , p). Therefore, M(r) = L(q, p)#L(q, p).    D
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3. Some work with continued fractions

and the euler bracket function

(See [Rob] for a fuller exposition.)

Recall by [a0, ax, ... , ar] we mean the continued fraction

1
ao +-1-

fl> +-r
a2

ai+-'.+   1

a
r

The Euler bracket function E[xQ, ... , xk] is the sum of all products obtained

from the product 1 • x0xx ■ ■ ■ xk by omitting zero or more disjoint pairs of

consecutive factors xixl+1 . For example E[x0, xx, x2] = xQxxx2 + x0 + x2.

By convention, we define E[ ] = E[0] — 1 and E[Xj, ... , xk] = 1 if k < j .

The following facts about the Euler bracket function can easily be shown and

are used in the proof of the following lemma.

(1) E[x0, ... ,xn] = xnE[x0, ... ,xn_x] + E[x0, ... ,xn_2],    for«>0;

(2) E[x0,...,xn\ = E[xn,...,x0];

(3) E[-x0, ... , -x„] = (-l)"+XE[x0,... , xj;

/ a \ r i l-^O ' • ' " ' Xn i

(4) [X°>->X»]=E[xx,...,xnY

In addition, E[x0, xx, ... , xn] and E[xx, ... , xn] are coprime.

Lemma 7.

(i)   E[a0, ... , ak, x, -ak, ... , -a0] = (-1) +xxE[a0, ... , ak] .

(ii)   E[ax, ... ,ak, x, -ak, ... , -a0]

= (-l)k+xxE[ax, ... , ak]E[a0,... , ak]+l.

As an immediate corollary, we have

Corollary 8.

(-l)k+xxE[a0,...,ak]2
\an, ... , a., x, -a, , ... , -aJ =-7—¡-.

° * k °      (-l)k+xxE[ax,...,ak]E[a0,... ,ak]+l

Proof of Lemma 1. The proof is by induction on k .

(i) is true for k — 0 :

E[a0,x, -a0] = -xa20 = (-l)xxE[a0] .

(ii) is true for k = 0 :

E[x, -a0] = -xa0 + 1 = (-l)xxE[ ]E[a0] + 1.
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Now, assume both statements are true for k = n - I ; that is,

E[a0,... ,an_x,x, -an_x, ... , -a0] = (-l)"xE[a0, ... , an_x] ;

E[ax, ... , an_x, x, -an_x, ... , -a0]

= (-l)"xE[ax, ... ,an_x]E[aQ, ... , <*„_,]+ 1.

For k = n:

E[a0 ,...,an,x,-a„,..., -a0]

= -aQE[a0,... ,an,x, -a„,..., -a,] + E[a0, ... , an , x, -an,..., -a2]

= -aQ{a0E[ax,...,an,x,-an,...,-ai] + E[a2,...,an,x,-an,..., -a,])

+ ao£K ,--,an,x,-an,..., -a2] + E[a2 , ... , an, x,-an, ... , -a2]

= -a20E[ax, ... ,an,x,-an,..., -ax ] - aQE[a2, ... , an, x,-an, ... ,-ax]

+ a0E[ax ,...,an,x,-an, ..., -a2] + E[a2, ... , an, x,-an, ... , -a2]

= -al{-l)"xE[ax, ... , anf - a0{{-lfxE[a2, ... , an]E[ax, ... , an]+ 1)

+ a0E[-a2, ... ,-an,x,an, ... , a,] + {-\)"+lxE[a2, ... ,an]

= a20{-l)n+lxE[ax, ... ,an]2+a0{-l)n+lxE[a2, ... ,an]E[ax, ... ,an]-a0

+ a0{{-l)nxE[-a2,..., -a„]E[-ax,... , -a„\ + 1) + {-l)n+lxE[a2 , ... , anf

= al{-l)n+l xE[ax, ... , an]2+a0{-\)n+lxE[a2,... , an]E[ax ,...,an]-a0

+ a0{-\)n+1xE[a2,...,an]E{ax,...,atl] + a0 + {-l)n+lxE[a2,...,an]2

= {-l)n+ix{a20E[ax,.., an]2 + 2a0E[a2,.. , an]E[ax , .. , an] + E[a2, .., an]2)

= {-l)"+lx{a0E[al, ... , a„] + E[a2, ... , a„])

= (-l)"+1jc£[a„, ... ,an] .

This establishes (i).

For (ii):

E[ax, ... ,an,x, -an, ... , -a0]

= -a0E[ax, ... ,an,x,-an, ... , -ax] + E[ax, ... , an, x,-an, ... , -a2]

= -a0(-l)"xE[ax, ... ,an]2 + (-l)"xE[-a2,... , -an]E[-ax, ..., -an]+ 1

= a0(-l)n+xxE[ax,... , anf + (-l)n+xxE[a2,... , an]E[ax, ... ,an]+l

= (-1 )"+xxE[ax, ... , an](a0E[ax, ... ,an] + E[a2, ... ,an]) + l

= (~l)"+lxE[ax, ... , an]E[a0, ... ,aj+l.   D

The following will also be used in the proof of Theorem 2.

Lemma 9.

(i)   E[b0 ,bx,...,bm_x,bm,x,-ak, -ak_x ,...,-ax, -a0]

= (-l)k+lE[b0,bx,...,bm_x,bm,x-l,l,ak-l,ak_x,...,ax,a0].

(ii)   E[b0 ,bx,...,bm_x,bm,-x,-ak, -ak_x,..., -aQ]

= (-l)kE[b0,bx,...,bm_x,bm- 1, l,x- l,ak,ak_x,... ,ax,a0].
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The following corollary is an immediate consequence of Lemma 9.

Corollary 10. For ak>2,

(i) [a0,ax, ... ,ak,2, -ak, -ak_x, ... , -a0]

= [a0,ax, ... ,ak, 1, 1, ak - 1, ak_x, ... , a0].

(ii) [a0,ax,... ,ak_x,ak,-2, -ak, -ak_x,... , -a0]

= [a0, ax, ... , ak_x, ak - 1, 1, 1, ak, ak_x, ... , a0].

Proof of Lemma 9. Using equations (1), (2) and (3), it may be demonstrated

that

(5) E[-ak, -ak_x, ... , -a0] = (-1) +XE[l,ak- 1, ak_x, ... , a0]

and

(6) E[x, -ak, -ak_x, ... , -a0] = (-l)'+xE[x- I, l,ak- I, ak_x, ... , a0]

(i) This follows from equations (1), (5) and (6), and by using induction on

m.

(ii) This may be proved using part (i).    D

4. The proof of Theorem 1

(i) implies (ii). Let L = S (a, b) with u(L) = 1 . By Lemma 5 there is an
2 1

ordinary fiber K of S x S such that r-surgery along K results in the lens

space L(a, b), where A(r, p) = 2. Let K be an (m, «)-fiber. Recall that if

A is a regular neighborhood of K, ordinary fibers on dN are (mn, l)-curves.

We have that A(mn, r) = \2mn - p\, where r = p/2 in the usual meridian-

longitude coordinates on dN(K). But \2mn - p\ = 1 , since our resulting

manifold is a lens space. (Otherwise we would have three singular fibers. Lens

spaces can be fibered with at most two.) By Lemma 6, L(a, b) is equivalent to

L(2n , p), but \2mn - p\ = 1 implies that p = 2mn ± 1 . Therefore, L(a, b)

is equivalent to L(2n , 2mn ± 1), where (m, n) = 1 . So L is equivalent to

S(2n2,2mn±l).

(ii) implies (iii). For every ■-, £ Q there is a continued fraction such that

% = [aQ, ... , ak]. From Corollary 8

±2(-l)*+V
[a0,ax ,...,ak,±2,-ak,..., -ax, -a0] = ±2{_x)k+imn + 1 •

Choosing the appropriate sign ( ±2 ) gives the required result. Therefore L is

equivalent to C(aQ, ax, ... , ak, ±2, -ak , ... , -ax, -aQ).
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Figure 2.  C(3, -4, -2, 4, -3) = S(242, 87)

/

Figure 3. C(3, 2,4,2, -4, -2, -3) = 5(1922, 557)

(iii) implies (i). The symmetry of any such two-bridge link shows that u(L) =

1. See Figure 2 for a case where k is odd. Changing one of the crossings at

the arrow results in a trivial link with two components.

For k even we have a similar situation. See Figure 3. If we change either of

the crossings at the arrow, again we will obtain a trivial link.

(iii) implies (iv). We are assuming that L may be expressed as

(7) C(a0, ax, ... , ak , +2, -ak , ... ,-ax, -a0).

By Corollary 8,

±2v2
[a0,ax,... ,ak,±2,-ak,... ,-ax, -a0] = ±2^ + l ,

where v and w are relatively prime. If v = 0, L is the trivial link of two

components. Therefore we may assume v > 1 .

There are three cases we need to consider:

(1) v = 1. L is equivalent to a Hopf link, C(2) = C(l, 1).

(2) v > | to | > 1. Using the Euclidean algorithm \%\ = [c0, cx, ... , cr] with

c¡> I for i = 0, I, ... , r and cr > 2.

If £ > 0, by Corollary 8 and [S],

L = C(Cq , C|, ... , Cf, ±z, —cr, ... , —cx, —Cq) ,

where the sign on the ±2 here may differ from that in (7). By Corollary 10,

L = C(c0 ,cx, ... , cr_x ,cr, I, l,cr- I, cr_x , ... ,cx,c0) or

L> = C \Cq , Ci , . . . , Cr_i ) Cr       A ?   ^ s   1 ? C^ , Cr_i ) • • • > vj ) CqJ .

If £ < 0, then | = [-c0 ,.-<?,,..., -cr]. As above,

L = C (—Cq , —C| , . . . ,     Cr , ±Z , C"r, ... , Cj , CqJ .

But, it is clear from the diagrams that for n  even,  C(x0, xx, ... , xn)  and

C(xn , ... , xx, x0) are equivalent. Thus

L = C (Cq , Cj , ... , Cr , +Z , —Cr , . . . , — Cj , — Cq).

We finish as above.
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Figure 4.  C(3,2,4, 1, 1,3,2, 3) = 5(1922, 557)

(3) |u;| > v > 1. By the division algorithm there are integers d and z such

that w = dv + z and 0 < z < v . Note that z > 1, since v > 1 and v and w

are coprime.

±2vw + 1 = ±2v(dv + z) + l = ±2vz + 1    (mod 2v2).

Therefore by [S],

L = S(±2v2 , ±2vw + l) = S(±2v2 , ±2vz + 1).

We find ourselves in case 2.

(iv) implies (iii). This is an immediate consequence of Corollary 10. As an

example of the equivalence of conditions (iii) and (iv), see Figure 4. The link

in Figure 4 is isotopic to the link in Figure 3.   D

Remark. The proof that conditions (iii) and (iv) of Theorem 2 are equivalent

is analogous to those implications above.

5. Addendum

We may use Theorems 1 and 2 to prove the following corollary:

Corollary 11. Let K be a two-bridge knot or link with u(K) = 1. There is a

crossing in a minimal diagram of K which, when changed, unknots K.

Proof. We express K as in condition (iv) of Theorem 1 or 2. Since each entry

in these expansions has the same sign, this is an alternating diagram. By [Mu]

these are minimal diagrams. We examine the knot

C- (Cq , Cj , ...  , Cj , 1   , I , Cr      1 , Cr_ x, . . .  , Cj ) ,

The other cases are similar. If we change the crossing in the starred position we

obtain the knot

A C (Cq , C| , . . .   , Cr ,       1 ,   1 , Cr       1 , Cr_x , . . .   , Cx).

But we may compute that the continued fraction,

1^0 >    1 ».' * *   >    r ' ~    '     ' *~r ~     ' ^r—l ' ' ' '   ' ^l ' =' ~()~'

Thus K' is unknotted.    D

Corollary 11 leads us to propose the following:
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Conjecture 12. Let K be a knot or link with u(K) = 1. There is a crossing in

a minimal diagram of K which, when changed, unknots K.

Using [N] for knots and his own calculations for links, the author has verified

this conjecture for knots and links with fewer than ten crossings.

We now examine the linking number of two-bridge links with unlinking num-

ber one. Let 0 and <j> be the components of a two-component link, L.

Let lk(0, <f>) be the absolute value of the linking number of 0 and <p. If

u(L) = 1, it is clear that lk(0 ,</>) = 0 or 1, since a single crossing change

can reduce lk(0, cf>) by at most one. For example in the Whitehead link,

C(2, 1, 1, 1) = C(2,2, -2) = 5(8, 3), lk(6, <f>) = 0. For the Hopf link,
C(2) = 5(2,1), lk(d,4>) = l.

For unlinking number one two-bridge links, we have the following corollary

to Theorem 1.

Corollary 13. If L = S(2n2, 2mn ±1), then

ii ,a   ¿s      Í 0   if* Is even>
lk(0,4>)={       J     .

\l    ifn is odd.

Proof. The proof of Theorem 1 implies that

-Ly   =   O (Cq ,   Cj   ,    . . .   ,   Cf ,    ~3L¿. , Cr  ,    .  .  .    , Lj   , Cq)

for some positive integers c0, cx, ... , cr. In addition cr > 2. Without loss of

generality, we may assume that r is even, since

C* \Cq , Cx , ... , Cr , ifcZ ,      Cr , .. . ,      Cj ,      Cq)

= C(c0,cx, ... , cr- 1, 1, +2, -1, -cr+ 1, ... , -cx, -Cq).

From the symmetry of the diagram for L, we see that the only possible contri-

bution to lk(0, <p) occurs at the "central ±2 half-twists."

When n is even, S(n, m) = C(a0, ax, ... ,ak) is a two-component link.

For n odd, S(n, m) is a knot. An examination of cases using the above facts

shows that the central crossings involve exactly one of the components when n

is even, giving lk(0, <p) = 0. Both components are involved when n is odd, so

lk(0, <p) = 1.   D

Remark. For any two-bridge link there is an involution of 5 exchanging the

components of the link. Thus for n even in the above corollary, the crossing

change can occur in either of the components.
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