ON ISOMORPHISMS OF INDUCTIVE LIMIT C^* -ALGEBRAS

KLAUS THOMSEN

(Communicated by Palle E. T. Jorgensen)

ABSTRACT. We prove that for a large class of inductive limit C^* -algebras, including inductive limits of finite direct sums of interval and circle algebras, any *-isomorphism is induced from an approximate intertwining, in the sense of Elliott, between the inductive systems defining the algebras.

In [3] Elliott introduced a notion, called an approximate intertwining, between two sequences of C^* -algebras, and used it successfully to extend, beyond the AF-algebras, the class of C^* -algebras for which K-theory is a complete invariant. The purpose of this note is to show that for a considerable class of inductive limit C^* -algebras, including the inductive limits of finite direct sums of interval algebras, $C[0, 1] \otimes M_n$, and circle algebras, $C(\mathbb{T}) \otimes M_n$, any *isomorphism is induced by an approximate intertwining. So with this notion Elliott has grasped all isomorphisms of such C^* -algebras. This result shows to what extent the inductive limit C^* -algebra reflects the inductive system defining it and gives a useful tool for the study of the structure of such inductive limit C^* -algebras.

Fix two sequences

(A)
$$A_1 \xrightarrow{\phi_1} A_2 \xrightarrow{\phi_2} A_3 \xrightarrow{\phi_3} A_4 \longrightarrow \cdots$$

and

(B)
$$B_1 \xrightarrow{\psi_1} B_2 \xrightarrow{\psi_2} B_3 \xrightarrow{\psi_3} B_4 \rightarrow \cdots$$

of C^* -algebras and *-homomorphisms. And fix subsets $F_i \subseteq A_i$ and $G_i \subseteq B_i$, which generate A_i and B_i , respectively, as C^* -algebras, $i \in \mathbb{N}$. For i > j we set $\phi_{i,j} = \phi_{i-1} \circ \phi_{i-2} \circ \cdots \circ \phi_j$ and $\psi_{i,j} = \psi_{i-1} \circ \psi_{i-2} \circ \cdots \circ \psi_j$. We define $\phi_{i,i}$ and $\psi_{i,i}$ to be the identity on A_i and B_i , respectively. Let $A = \varinjlim A_i$ and $B = \varinjlim B_i$ denote the corresponding inductive limit C^* -algebras and μ_i^A : $A_i \to A$ and $\mu_i^B \colon B_i \to B$ be the canonical *-homomorphisms. We emphasize that the connecting *-homomorphisms are not assumed to be injective.

The following is one of several possible elaborations on Remark 2.3 of [3].

Received by the editors January 21, 1990.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 46M40; Secondary 46L40.

Lemma 1 (Elliott). Let $\{n(i)\}$ and $\{m(i)\}$ be strictly increasing sequences in \mathbb{N} and $\{\delta_n\}$ a sequence in $[0, \infty[$ such that $\sum_{n=1}^{\infty} \delta_n < \infty$. Let $\alpha_i : A_{n(i)} \to B_{m(i)}$, $i \in \mathbb{N}$, be *-homomorphisms such that

$$\|\psi_{m(i+1), m(i)} \circ \alpha_{i} \circ \phi_{n(i), n(k)}(x) - \alpha_{i+1} \circ \phi_{n(i+1), n(k)}(x)\| < \delta_{i},$$

whenever $k \leq i$ and $x \in F_{n(k)}$.

Then the sequence $\{\mu_{m(i)}^B \circ \alpha_i \circ \phi_{n(i),k}(x)\}$, $i \ge k$, converges in B for each $x \in A_k$ and all $k \in \mathbb{N}$. Furthermore, there is a *-homomorphism $\alpha: A \to B$ such that

$$\alpha(\mu_k^A(x)) = \lim_{i \to \infty} \mu_{m(i)}^B \circ \alpha_i \circ \phi_{n(i),k}(x),$$

 $x \in A_k$, $k = 1, 2, 3, \dots$.

Proof. To prove that $\{\mu_{m(i)}^B \circ \alpha_i \circ \phi_{n(i), n(k)}(y)\}$ converges for all $y \in A_{n(k)}$, it clearly suffices to consider the case that $y \in F_{n(k)}$. But in this case, the sequence is Cauchy by our assumption. It follows that the sequence $\{\mu_{m(i)}^B \circ \alpha_i \circ \phi_{n(i), k}(x)\} = \{\mu_{m(i)}^B \circ \alpha_i \circ \phi_{n(i), n(k)} \circ \phi_{n(k), k}(x)\}$ converges for all $x \in A_k$.

Therefore we can define $\alpha'_k \colon A_k \to B$ by $\alpha'_k(x) = \lim_{i \to \infty} \mu^B_{m(i)} \circ \alpha_i \circ \phi_{n(i), k}(x)$. Since $\alpha'_{k+1} \circ \phi_k = \alpha'_k$, we obtain a *-homomorphism $\alpha \colon A \to B$ with the stated property. \Box

The assumption of the lemma can be visualized schematically as follows.

A *-homomorphism $\alpha: A \to B$ obtained from *-homomorphisms α_i as in Lemma 1 is called *approximately filtered* and denoted by $\alpha = \lim_{i \to \infty} \alpha_i$.

Definition 2. By an approximate intertwining between the sequences (A) and (B), we mean two increasing sequences $\{n(i)\}$ and $\{m(i)\}$ in \mathbb{N} , together with *-homomorphisms $\alpha_i \colon A_{n(i)} \to B_{m(i)}$ and $\beta_i \colon B_{m(i)} \to A_{n(i+1)}$ such that

$$\begin{split} \|\alpha_{i+1} \circ \beta_i(x) - \psi_{m(i+1), m(i)}(x)\| &< 2^{-i}, \\ \text{for } x \in \bigcup_{k \le i} \psi_{m(i), m(k)}(G_{m(k)}), \ x \in \bigcup_{k \le i} \alpha_i \circ \phi_{n(i), n(k)}(F_{n(k)}), \\ \|\beta_i \circ \alpha_i(y) - \phi_{n(i+1), n(i)}(y)\| &< 2^{-i}, \\ \text{for } y \in \bigcup_{k \le i} \phi_{n(i), n(k)}(F_{n(k)}), \ y \in \bigcup_{k < i} \beta_{i-1} \circ \psi_{m(i-1), m(k)}(G_{m(k)}), \ i \in \mathbb{N}. \end{split}$$

This definition should be compared with that in [3]. Schematically, an approximate intertwining can be visualized as follows.

This diagram is analogous to the diagram in [1, p. 206], which has played such an important role in the study of AF-algebras. The difference is that the triangles do not commute exactly, but only better and better as one approaches infinity in the diagram.

Theorem 3 (Elliott). An approximate intertwining between the diagrams (A) and (B) induces a *-isomorphism between $A = \lim_{i \to \infty} A_i$ and $B = \lim_{i \to \infty} B_i$.

Proof. From the norm estimates in the definition of an approximate intertwining, it follows that

$$\|\psi_{m(k), m(i)} \circ \alpha_i(x) - \alpha_k \circ \phi_{n(k), n(i)}(x)\| \le 2^{-i+2}, \qquad x \in \bigcup_{j \le i} \phi_{n(i), n(j)}(F_{n(j)}),$$

and

$$\|\phi_{n(k), n(i+1)} \circ \beta_i(x) - \beta_{k-1} \circ \psi_{m(k-1), m(i)}(x)\| \le 2^{-i+1},$$

$$x \in \bigcup_{j \le i} \psi_{m(i), m(j)}(G_{m(j)}).$$

Therefore Lemma 1 can be applied to get approximately filtered *-homomorphisms $\alpha = \varinjlim \alpha_i \colon A \to B$ and $\beta = \varinjlim \beta_i \colon B \to A$. By using the original estimates from the definition of an approximate intertwining it is easily seen that α and β are inverses of each other. \Box

Lemma 4. Assume that the generating sets $F_i \subseteq A_i$ and $G_i \subseteq B_i$ are all finite sets. Let $\alpha: A \to B$ be a *-isomorphism such that α and α^{-1} both are approximately filtered.

Then α is induced from an approximate intertwining of the sequences (A) and (B).

Proof. Assume that α and $\beta = \alpha^{-1}$ are derived from the data indicated by the following two diagrams:

and

Let t_1, t_2, t_3, \ldots be the sequence in]0, 1[determined recursively as follows:

 $t_1 = 1/6$ and $2t_{n+1} + t_n = 2^{-(n+1)}$, $n \ge 1$.

We construct an approximate intertwining between (A) and (B), which can be described schematically as follows:

where the *-homomorphisms $\alpha'_i \colon A_{n(y_i)} \to B_{k(x_i)}$ are related to the α_i 's by

(1)
$$\alpha'_{i} = \psi_{k(x_{i}), m(c_{i})} \circ \alpha_{c_{i}} \circ \phi_{n(c_{i}), n(y_{i})}, \qquad i \in \mathbb{N}$$

for some strictly increasing sequence $\{c_i\} \subseteq \mathbb{N}$ with $n(y_i) < n(c_i)$ and $m(c_i) < k(x_i)$. Once this is done it follows from Lemma 1 that $\alpha = \varinjlim \alpha'_i = \varinjlim \alpha_i$, so that α is the *-isomorphism induced by the constructed approximate intertwining.

The construction proceeds by induction. To construct α'_i , set $y_1 = 1$ and choose any $c_i \in \mathbb{N}$ such that $n(1) < n(c_1)$ and

$$\|\alpha(\mu_{n(1)}^{A}(x)) - \mu_{m(c_{1})}^{B} \circ \alpha_{c_{1}} \circ \phi_{n(c_{1}), n(1)}(x)\| < t_{2},$$

for $x \in F_{n(1)}$. This can be done by the definition of $\alpha = \varinjlim \alpha_i$, since $F_{n(1)}$ is a finite set. Then we choose $x_1 \in \mathbb{N}$ such that $m(c_1) < k(x_1)$ and set

$$\alpha'_{1} = \psi_{k(x_{1}), m(c_{1})} \circ \alpha_{c_{1}} \circ \phi_{n(c_{1}), n(1)}.$$

Now assume that we have constructed the following piece of an approximate intertwining:

such that α'_i , $i \leq d$, have the form indicated by (1) and such that

(2)
$$\|\alpha(\mu_{n(y_d)}^A(z)) - \mu_{m(c_d)}^B \circ \alpha_{c_d} \circ \phi_{n(c_d), n(y_d)}(z)\| < t_{2d},$$

950

for $z \in M_d$, where M_d is the union of

$$\bigcup_{a\leq d}\phi_{n(y_d),n(y_a)}(F_{n(y_a)})$$

and

$$\bigcup_{a < d} \beta'_{d-1} \circ \psi_{k(x_{d-1}), k(x_a)}(G_{k(x_a)}).$$

The induction step then proceeds as follows. Find b in N such that $l(b) > n(y_d)$, $b > x_d$ and

(3)
$$\|\beta(\mu_{k(x_d)}^B(y)) - \mu_{l(b)}^A \circ \beta_b \circ \psi_{k(b), k(x_d)}(y)\| < t_{2d+1},$$

for $y \in N_d$, where N_d is the union of $\bigcup_{a \leq d} \psi_{k(x_d), k(x_a)}(G_{k(a)})$ and $\alpha'_d(M_d)$. This can be done by the definition of $\beta = \varinjlim \beta_i$, using that N_d is a finite set. Next find y_{d+1} in \mathbb{N} so large that

(4)
$$\|\phi_{n(y_{d+1}), l(b)}(z)\| < t_{2d+1} + \|\mu_{l(b)}^{A}(z)\|$$

for all $z \in (\beta_b \circ \psi_{k(b), k(x_d)} \circ \alpha'_d - \phi_{l(b), n(y_d)})(M_d)$. This can be done because $\|\mu_{l(b)}^A(z)\| = \lim_{i \to \infty} \|\phi_{n(i), l(b)}(z)\|$ for each z.

Set $\beta'_d = \phi_{n(y_{d+1}), l(b)} \circ \beta_b \circ \psi_{k(b), k(x_d)}$. For each $x \in M_d$, we find the following estimates, using first (4), then (3) and (1), and finally (2):

$$\begin{aligned} \|\beta'_{d} \circ \alpha'_{d}(x) - \phi_{n(y_{d+1}), n(y_{d})}(x)\| \\ &< t_{2d+1} + \|\mu^{A}_{l(b)} \circ \beta_{b} \circ \psi_{k(b), k(x_{d})} \circ \alpha'_{d}(x) - \mu^{A}_{l(b)} \circ \phi_{l(b), n(y_{d})}(x)\| \\ &\leq 2t_{2d+1} + \|\beta \circ \mu^{B}_{k(x_{d})} \circ \alpha'_{d}(x) - \mu^{A}_{n(y_{d})}(x)\| \\ &= 2t_{2d+1} + \|\beta(\mu^{B}_{m(c_{d})} \circ \alpha_{c_{d}} \circ \phi_{n(c_{d}), n(y_{d})}(x)) - \mu^{A}_{n(y_{d})}(x)\| \\ &\leq 2t_{2d+1} + t_{2d} + \|\beta \circ \alpha \circ \mu^{A}_{n(y_{d})}(x) - \mu^{A}_{n(y_{d})}(x)\| = 2t_{2d+1} + t_{2d} < 2^{-(d+1)}. \end{aligned}$$
Now choose $c_{1} \geq c_{1}$ such that $n(c_{1}) \geq n(y_{1}) > n(y_{1})$ and

Now choose $c_{d+1} > c_d$ such that $n(c_{d+1}) > n(y_{d+1})$ and

(5)
$$\|\mu_{m(c_{d+1})}^{B} \circ \alpha_{c_{d+1}} \circ \phi_{n(c_{d+1}), n(y_{d+1})}(x) - \alpha(\mu_{n(y_{d+1})}^{A}(x))\| < t_{2d+2},$$

for all $x \in M_{d+1} \cup \beta'_d(N_d)$ and then x_{d+1} so that $k(x_{d+1}) > m(c_{d+1})$ and (6) $\|\psi_{k(x_{d+1})}\|_{m(c_{d+1})} \le t_{2d+2} + \|\mu^B_{m(c_{d+1})}(z)\|$,

(6)
$$\|\psi_{k(x_{d+1}), m(c_{d+1})}(z)\| < t_{2d+2} + \|\mu_{m(c_{d+1})}(z)\|$$
for all $z \in (\infty, \infty, 0, \infty)$

for all $z \in (\alpha_{c_{d+1}} \circ \phi_{n(c_{d+1}), n(y_{d+1})} \circ \beta'_d - \psi_{m(c_{d+1}), k(x_d)})(N_d)$.

Set $\alpha'_{d+1} = \psi_{k(x_{d+1}), m(c_{d+1})} \circ \alpha_{c_{d+1}} \circ \phi_{n(c_{d+1}), n(y_{d+1})}$. Then we find the following estimates for all $x \in N_d$, by using first (6), then (5) and (3):

$$\begin{aligned} \|\alpha'_{d+1} \circ \beta'_{d}(x) - \psi_{k(x_{d+1}), k(x_{d})}(x)\| \\ &< t_{2d+2} + \|\mu^{B}_{m(c_{d+1})} \circ \alpha_{c_{d+1}} \circ \phi_{n(c_{d+1}), n(y_{d+1})} \circ \beta'_{d}(x) - \mu^{B}_{k(x_{d})}(x)\| \\ &< 2t_{2d+2} + \|\alpha \circ \mu^{A}_{n(y_{d+1})} \circ \beta'_{d}(x) - \mu^{B}_{k(x_{d})}(x)\| \\ &< 2t_{2d+2} + t_{2d+1} < 2^{-(d+1)}. \end{aligned}$$

KLAUS THOMSEN

This completes the induction step and hence the proof. \Box

Lemma 5. Let $\alpha: A \to B$ be a *-homomorphism and assume that the generating subsets $F_i \subseteq A_i$ are finite. Assume, furthermore, that for each $i \in \mathbb{N}$ and each $\varepsilon > 0$, there is a $k \in \mathbb{N}$ and a *-homomorphism $\alpha_i: A_i \to B_k$ such that

$$\|\mu_k^B \circ \alpha_i(x) - \alpha \circ \mu_i^A(x)\| < \varepsilon, \qquad x \in F_i.$$

Then α is approximately filtered.

Proof. For each $i \in \mathbb{N}$, the set $F'_i = \bigcup_{j \leq i} \phi_{i,j}(F_j)$ is finite. Our assumptions are therefore strong enough to give us a strictly increasing sequence $\{k(i)\}$ in \mathbb{N} and *-homomorphisms $\alpha_i \colon A_i \to B_{k(i)}$ such that

(7)
$$\|\mu_{k(i)}^B \circ \alpha_i(x) - \alpha \circ \mu_i^A(x)\| < 2^{-i}, \qquad x \in F_i'.$$

We use this to construct by induction a strictly increasing sequence $\{m(i)\}$ in \mathbb{N} and *-homomorphisms $\alpha'_i: A_i \to B_{m(i)}$ such that m(i) > k(i), $\alpha'_i = \psi_{m(i), k(i)} \circ \alpha_i$, and

$$\|\psi_{m(i+1), m(i)} \circ \alpha'_i(x) - \alpha'_{i+1} \circ \phi_i(x)\| < 2^{-i} + 2^{-i-1}, \qquad x \in F'_i.$$

We leave the reader to start the induction and concentrate on the induction step. So assume that m(i) and α'_i , $i \leq d$, have been found. (7) yields the estimate

$$\begin{aligned} \|\mu_{l}^{B}(\psi_{l,m(d)} \circ \alpha_{d}'(x) - \psi_{l,k(d+1)} \circ \alpha_{d+1} \circ \phi_{d}(x))\| \\ &= \|\mu_{k(d)}^{B} \circ \alpha_{d}(x) - \mu_{k(d+1)}^{B} \circ \alpha_{d+1} \circ \phi_{d}(x)\| \\ &< 2^{-d} + 2^{-d-1}, \qquad x \in F_{d}', \end{aligned}$$

for $l = \max\{m(d), k(d+1)\}$. It follows that there is a m(d+1) > l such that

$$\|\psi_{m(d+1), m(d)} \circ \alpha'_{d}(x) - \psi_{m(d+1), k(d+1)} \circ \alpha_{d+1} \circ \phi_{d}(x)\| < 2^{-d} + 2^{-d-1},$$

 $x \in F'_d$. Set $\alpha'_{d+1} = \psi_{m(d+1), k(d+1)} \circ \alpha_{d+1}$. This completes the induction step. By Lemma 1 we obtain a filtered *-homomorphism $\alpha' = \lim_{i \to \infty} \alpha'_i$. Since

$$\begin{split} \alpha'(\mu_k^A(x)) &= \lim_{i \to \infty} \mu_{m(i)}^B \circ \alpha'_i \circ \phi_{i,k}(x) \\ &= \lim_{i \to \infty} \mu_{m(i)}^B \circ \psi_{m(i),k(i)} \circ \alpha_i \circ \phi_{i,k}(x) \\ &= \lim_{i \to \infty} \mu_{k(i)}^B \circ \alpha_i \circ \phi_{i,k}(x) \end{split}$$

and

$$\|\mu_{k(i)}^{B} \circ \alpha_{i} \circ \phi_{i,k}(x) - \alpha \circ \mu_{i}^{A} \circ \phi_{i,k}(x)\| < 2^{-i},$$

 $x \in F_k$, $i \ge k$, we conclude that $\alpha'(\mu_k^A(x)) = \alpha \circ \mu_k^A(x)$, $x \in F_k$, $k \in \mathbb{N}$. Hence $\alpha = \alpha'$ and the proof is complete. \Box Let \mathscr{C} denote the class of C^* -algebras A that meet the following conditions:

(i) A is finitely generated, and

(ii) when $B = \lim_{n \to B} B_{n}$ is the inductive limit of a sequence of C^{*} -algebras $B_{n}, \mu_{n}: B_{n} \to B$ the canonical *-homomorphisms, $\alpha: A \to B$ a *-homomorphism, $F \subseteq A$ a finite set and $\varepsilon > 0$, then there is a $k \in \mathbb{N}$ and a *-homomorphism $\beta: A \to B_{k}$ such that $\|\mu_{k} \circ \beta(x) - \alpha(x)\| < \varepsilon, x \in F$.

If all the C^* -algebras in the sequence (A) are in the class \mathscr{C} , the second assumption of Lemma 5 is automatically fulfilled. So we get the following result.

Theorem 6. (i) Assume that the C^* -algebras occurring in the sequence (A) are in \mathscr{C} . Then every *-homomorphism $\alpha: A \to B$ is approximately filtered.

(ii) Assume that the C^{*}-algebras occurring in the sequences (A) and (B) are in \mathscr{C} . Then any *-isomorphism $\alpha: A \to B$ is induced from an approximate intertwining of the sequences (A) and (B).

Proof. Combine Lemma 4 and Lemma 5. \Box

By modifying arguments from [2], it is not difficult to prove the following assertions:

- (a) \mathbb{C} , $C_0(\mathbb{R})$, $C(\mathbb{T})$, $O_A \in \mathscr{C}$ (where O_A are the Cuntz-Krieger algebras).
- (b) When $A, B \in \mathscr{C}$ are unital, then $A \oplus B \in \mathscr{C}$.
- (c) When $A \in \mathscr{C}$ is unital and F is finite-dimensional, then $A \otimes F \in \mathscr{C}$.

(d) When A, $B \in \mathscr{C}$ are unital and $F \subseteq A$, $F \subseteq B$ is a common unital finite-dimensional C^* -subalgebra, then (the amalgamated free product) $A *_F B \in \mathscr{C}$.

Furthermore, it is asy to show that \mathscr{C} contains C[0, 1] and $C^*(F_n)$ for all n. In particular, \mathscr{C} contains all finite direct sums of circle and interval algebras.

References

- 1. O. Bratteli, Inductive limits of finite dimensional C^{*}-algebras, Trans. Amer. Math. Soc. 171 (1972), 195–234.
- E. G. Effros and J. Kaminker, Homotopy continuity and shape theory for C*-algebras, Geometric Methods in Operator Algebras (H. Araki and E. G. Effros, eds.), Pitman Research Notes in Math. Ser. 123, Longman Scientific & Technical, 1986.
- 3. G. A. Elliott, On the classification of C^* -algebras of real rank zero, preprint.

MATEMATISK INSTITUT, NY MUNKEGADE, 8000 AARHUS C, DENMARK