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ON THE STABLE RANK OF /7°°
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(Communicated by Paul S. Muhly)

Abstract. We prove that if fx, f2 are corona data and fx is the product of

finitely many interpolating Blaschke products, then there exist corona solutions

gx, g2 with g~ ' e H°° (D). This provides a partial result in the direction

of proving the stable rank of the algebra of bounded analytic functions on the

open unit disc is one.

1. Introduction

Let A be a commutative ring with identity. An «-tuple a £ A" is said to

be unimodular if there exists b £ A" such that YH=X b¡ai = 1 . We denote the

set of unimodular elements of A" by U„(A). An element a £ A" is said to be

reducible if there exists Xi, ... , x„_i £ A such that

(ax +xi¿z„, a2 + x2an,... , an-X + xn-Xan) e Un-X(A).

We define the stable rank of A , denote by sr(,4), to be the least n - 1 with the

property that every a £ U„(A) is reducible.

The notion of stable rank has been useful in studying problems relating to

the structure of commutative Banach algebras (see [1]) and recently some work

has been done on calculating the stable rank of various algebras of analytic

functions. In [6] it is shown that the disc algebra has stable rank 1 and thereby

answered a question raised by Rieffel in [9] in which a related concept, the

topological stable rank is introduced. It is defined whenever A is a Banach

algebra by tsr(^4) = min{« : Un(A) is dense in A"}. Rieffel leaves open whether

sr(^) = tsr(A) and points out that if A is the disc algebra then tsr(A) = 2.

However, in [4] it is shown that whenever A is a unital C*-algebra, sr(A) =

tsr(A).
In [1] it is conjectured that the stable rank of the algebra of bounded analytic

functions on the unit disc is 1; that is every (fx, f2) £ U2(H°°(D)) is reducible

to an element of (H°°(D))~l , the invertible elements of H°°(D). Equivalently,

via the corona theorem, this means given fx,f2£ H°°(D), \fx | + \f2\ > ô > 0,

there exists g{ £ (//°°(!>))-' , g2 £ H°°(D) such that figi + f2g2 = 1 . The
purpose of this paper is to provide a partial result in this direction. Before

stating our theorem we require some definitions.
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80 P. J. HOLDEN

We denote by H°° the algebra of bounded analytic functions on the unit

disc D = {z : \z\ < 1} equipped with the supremum norm. A(D) denotes the

disc algebra, that is A(D) = H°°(D) n C(D). A sequence {zj} CD is called a

Blaschke sequence if ¿-(1 - |z/|) < oo and the bounded analytic function

OO       —

1J- \z„\ 1 -Z„Z
n=l

is called a Blaschke product. A Blaschke sequence {zj} for which every in-

terpolation problem f(z¡) - aj , {¿zy} £ l°° has a solution / £ H°° is called

an interpolating sequence and the corresponding Blaschke product is called an

interpolating Blaschke product. It is not known whether the set of interpolating

Blaschke products are dense in the set of Blaschke products. A positive answer

to this question implies sr(//°°) = 1 (see corollary below). The theorem we

prove is the following:

Theorem 1. Let f,f2£ H°°(D) with infzGDmax(|/i(z)|, \f2(z)\) > Ô > 0.
If fx is the product of finitely many interpolating Blaschke products, then there

exists gi £ (H°°(D))-\, g2 £ H°°(D) such that fxgx + f2g2 = 1.

The existence of gi, g2 £ H°°(D) with figi + f2g2 = 1 follows from
Carleson's corona theorem (see [3, Chapter VIII]). However the proofs of the

corona theorem do not give gi £ (H°°(D))~l . If fx is the finite product of

interpolating Blaschke products, it is not too difficult to obtain gi e H°°(D),

g2 £ (//^(Z)))-1 . See [7, Corollary 3.5]. Theorem 1 is proved in [1, 6] under the

assumption that fx,f2£ A(D). This has been extended to the case f £ A(D),

fi £ H°°(D) in [2] by first showing that it suffices to assume f(z) = z. We

note that this is then a special case of Theorem 1. More generally, Laroco [8]

has shown that sr(H°°) = 1 if log/i can be boundedly analytically defined on

{z : |/2(z)| < e} for some e > 0. It is also shown in [8] (Theorem 3.6) that in

proving the reducibility of a general corona pair (f , f2) we can assume f is

a Blaschke product. Combining Theorem 1 with some of the results in [8], we

have the following corollary, which was shown to me by L. Laroco.

Corollary. If every Blaschke product can be uniformly approximated by interpo-

lating Blaschke products, then sr(H°°(D)) = 1.

Proof of Corollary. Let (f\, f2) £ U2(H°°(D)), which we require to show is

reducible. The hypothesis of the corollary and the proof of Theorem 1.1 in [8]

show that the set {Bh: B is an interpolating Blaschke product, h £ (H°°(D))~1}

is dense in H°°(D). Consequently, by Corollary 1.2 in [8] there exists interpo-

lating Blaschke products B\, B2 and h{, h2 £ (H°°(D))~l such that

(1) fiBihi + f2B2h2 = I.

We now utilize the proof of Theorem 3.6 in [8]. Equation (1) implies (Bx, f2) £

U2(H°°(D)) and so by Theorem 1 is reducible to (//^(D))-1 ; that is there exists

gx £ (//^(Z)))-1, g2 £ H°°(D) such that Bx+g2f2 = gx . Substituting into (1)

gives

fi(gi - gifi)h\ +f2B2h2 = fxgxhx +fx(B2h2 - fxg2hx) = 1

and gxhx £(H°°(D))-'1 as required.    D
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2. Proof of Theorem 1

In proving Theorem 1 it is convenient to work in the upper halfplane R2 . We

denote by H°°(R+), or simply H°° , the algebra of bounded analytic functions

V2    .    All     ».jon R2 . In R+ the Blaschke product with zeros {z„} is

OO j -,

B(z) = TT an [-=^ )    where a„ =
¡à        \Z-Zn) 1 + Z2

Denote by

Zk - zn

Zk
ô(B) = inf\

k¿n

and by p(z, w) = \(z — w)/(z -w)\ the pseudo-hyperbolic distance between

z, w £ R+. If z € R^, r > 0 let D(z, r) = {w £ R£ : p(z, w) < r}. A

Carleson cube in R+ is a cube of the form Q = {(x, y) : xq < x < x0 + h ,

0 < y < h} , and we denote its length by l(Q). A measure p on R2 is called

a Carleson measure if |/j|(ô) < Cl(Q) for all Carleson cubes Q. Carleson's
interpolation theorem states that the following are equivalent:

(1) {zj} is an interpolating sequence in R+ ;

(2) there exists n > 0 such that inffc ILy* P(zj > zk) > n > 0 ;

(3) there exists a > 0 such that for all j / k, p(z¡, z¿.) > a, and the

measure dp = 52,0 - |zy|)<?Zy, is a Carleson measure where ôz denotes the

Dirac measure at z (see [3, Chapter VII]).

Finally, if E ç R+ we denote by E* the set {x: x + iy £ E for some v} .

Lemma 1. Let fx,...,f„,g £ H°°. If (f, g) £ U2(H°°), 1 < i < N and
each (fi,g) is reducible to (H°°)-1 then (Y["=ifi,g) is reducible to (H00)'1.

Proof. The hypothesis of the lemma implies there exist k¡ £ H°° , h, £ (//°°)-1

such that f + kig = h¡. Then nf=iC/î + kg) = Il/Li hi•» which implies
(n?=i fi) + kg = n?=1 hi for some fe € H°° and ]!"=. */ e (Z/00)-1.   D

A consequence of Lemma 1 is that we need only prove Theorem 1 for inter-

polating Blaschke products.

Lemma 2. Let 0 < r]0 < 1. Then there exists po = Po(f]o), 0 < rjo < 1 such that

for all 0 < p < po there exists X = X(p) such that if B(z) is an interpolating

Blaschke product with zeros {z^} and inf„ Ylk¿„ p(zk , z„) > t]o, then

(i) {z:\B(z)\<p}c\JnD(zn,X) and
(ii) D(z„ , X) n D(zk ,X) = 0 for all k¿ n.
Furthermore X(p) may be chosen so that lim^_o Kp) = 0 •

Proof. The proof of this result for the unit disc is contained in the proof of

Lemma 4.2 in [5]. The result for R2  follows by a conformai map.   D

Lemma 3. Let {zk}k>i be an interpolating sequence with inf„ \[k¿n p(zk, z„) =

n>0. If p(z, zk)<t]/3, then \[n¥:kp(z, zn)> n/3.

Proof. The triangle inequality for the metric p implies

n¿k n¿k yK    '     k'Hy   "'    k'
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Let B(z) be the Blaschke product with zeros {p(zk , zn))n^k . Note that the

right-hand side of (2) is B(p(z, zk)) while 5(0) = t\n^k p(zk , zn). Schwarz's

lemma implies

\B(p(z,zk))-B(0)\
< P(z, zk)

and hence,

\\-mP(z,zk))B(0)\

W/,(z,zt))i>W°''-f;^)>|
l+p(z,zk) 3

Hence by (2) we have Y[n-¿k P(z > z«) > *lß •   D

Lemma 4. Let B(z) be an interpolating Blaschke product with zeros {zk} and

let ô(B) = inf„ nkjén p(zk, zn). Then B has a factorization B = BXB2 such

that S(Bj)>ô(B)1/2, J = 1,2.

Proof See Corollary 1.6 in Chapter X of [3].   D

Lemma 5. Let B(z) be an interpolating Blaschke product with zeros {zk} and

2-'suppose ô(B) > 0.  Then if Q is a Carleson cube and zk £ Q, ^szk > \l(Q),

then

S^^(l0g^))/(Ö)'

j¿k

Proof. This result is contained in the proof of Lemma 2 [7, p. 267].   D

We also need a version of Theorem 1.1 in Chapter VIII of [3].

Lemma 6. Let dp = hdxdy be a Carleson measure on R2 , where h £ C°°(R2)

and supp/z n R2 ç {z: \z\ < R} for some R > 0. Then there exists u £

C(R2) n Cl(R2) such that du = h and supxeR\u(x)\ < C where C depends

only on supe \p\(Q)/\Q\.

Proof. For z £ R2 , define

F(z) = - i [   tß^dudv,        Ç = u + iv.
n J Jkí C - -z

Then since h has compact support, F £ C(R2 ). Also, F £ C'(R2) since

F is convolution of a function in C°°(R2\{0}) with a function in C°°(R2 ).

Also note that F £ C0 — {/ £ C(R): limx^±00 f(x) = 0}. The argument that

dF — h is essentially the same as the corresponding argument in [3, p. 319].

To obtain the solution u, use the duality argument in [3, p. 321], observing

that the dual of C0/C0 n H°° is //'  (see [7, p. 193]).   □

We prove Theorem 1 with fx(z) — B(z), where B(z) is an interpolat-

ing Blaschke product with zeros {zk} . Let r50 = infzgR+max(|ß(z)|, |y2(z)|)

and we can assume without loss of generality that \\f2\\oo < 1 ■ With rj0 =

inf„Y[k¿np(zk, z„) in Lemma 2, choose 0 < px < c50 so that Xx - Xx(px) <

¿o/8 . Also choose n > n0 so that 100 log l/n < 1/32 and note that n > 3/4.
Now choose p2 < px so that X2 = X2(p2) < min(px/2, Xx/2, n/20). The
constants n, px , p2 , Xx , X2 depend only on So and r¡o .
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Using Lemma 4, factor B into interpolating Blaschke products Bx, ... , Bn

such that for each B¡, o(B¡) > n . By Lemma 1, it suffices to prove Theorem

1 for each of the factors Bx, ... , B„ . Select one factor and denote it by B

and its zeros by {zk} . Observe that infz€R+max(|/?(z)|, \f2(z)\) > ô0. Now

let r > 0 be small. Let Br(z) denote the finite Blaschke product with zeros

{z/} where 5zy > (4/t50)r and \zj\ < l/r. Denote these zeros by Z\, ... , Zff.

Also let f2,r(z) = f2(z + ir). Then Br(z), f2,r(z) £ H°°({y > -r}) and

limr_o-#r(z) = B(z), limr^of2,r(z) = f2(z) uniformly on compact subsets of

l2

inf max(|Är(z)|,|/2,r(z)|)>Ai,

Indeed, if \f2>r(z)\ < Pi < S0, then \B(z + ir)\ > ¿o. This implies that
p(z + ir, zn) > So, 1 < i < N. Now D(z„,ôo) is the Euclidean disc

{z : \z - c\ < R} where

i+^oV.     -^    »       2So
c-*+,U=&r" and R = Y^Tfn-

A calculation then shows that dist(9£>(z„, So), dD(z„, Ôq/2)) > (ôo/3)y„ >
r. Hence p(z + ir, z„) > ôo implies p(z, z„) > Sq/2 > X\, 1 < n < N.

By Lemma 2 this implies |5r(z)| > pi. Suppose now |5r(z)| < p¡ . Then

p(z + ir, z„) < X\ < So/2 for some z„ . A similar calculation to the above

shows then that z + ir £ D(z„, So) and hence \B(z + ir, z„)\ < So- Thus

\f2(z + ir)\ > Sq > Pi ■ We now denote Br, f2r by B and f2 respectively.

By using a normal families argument it suffices to prove Theorem 1 for B and

fi provided we show that the upper and lower bounds for gi and the upper

bound for g2 depend only on ôo and no .

The proof of Theorem 1 consists of constructing to each z¡, 1 < j < N

regions 7), 7} , 7) Ç Tj C R2  satisfying the following properties:

(i) D(zj, X2) C Tj and f* = D(z}, 2X2)*.

(ii) The region R2 \7) is simply connected and for each z e R2 \Tj

Z — Zj
<C,

where C is independent of y .

(iii) There exists e = e(So, t]o), 0 < e < 1  such that {z e R2 : \f2(z)\ <

e}nfj = 0, 1 <j<N.
(iv) 7) n 7\ = 0 , jjtk and

dist(fj\D(Zj, 2X2), fk\D(zk , 2X2)) > C(ô0, n0) min(V>, yk).

(v) There exists <p} £ C°°(R2 ), 0 < fa < 1, <p} = 1 on Tj , <pj = 0 on 7J ,

d(f)j £ L°°(R2 ), and such that for any Carleson cube Q,

IL\d<Pj\dxdy<Cmin(l(Q),yj)
Q

for some absolute constant C.



84 P. J. HOLDEN

Before constructing the above regions, we show how Theorem 1 is established.

Properties (i) and (ii) imply that on KJxT) we can define an analytic branch

of log(cxj((z-Zj)l(z-Zj))) with

(3) log <m <c.

Denote this branch by logj(cxj((z - Zj)/(z - zf))). Define

F = exp h[>log,(a7.(^))

and note that F £ C(R2 ), H^H«, < C. Now let

.^-¿ê*,^(w(£zà))

Then h £ C°°(R2) since d<j>j # 0 only if z £ \J(Tj\Tj) and in this case
by (iii),   |/2(z)| > e.   Since there are finitely many zeros, we see also that

suppÄ n R2 ç {z: \z\ < R} for some R > 0. Also, the measure \h\dxdy is

a Carleson measure on R2 . To see this, let Q = {(x, y): Xq < x < xo + I,

0 < y < 1} be any Carleson cube in R£ . If 3z; > 3/ then D(zj , 2X2)nQ = 0 .

Consequently, by (iv) there are at most C 7)'s corresponding to points z¡,

%Zj > 31 for which f} n Q ¿ 0. If %zj < 3/ and Tj n Q # 0, then zj is
contained in the cube Q' = {(x, y): xo - 21 < x < x0 + 31, 0 < y < 51}. Thus

II \h\dxdy <jll^2\dcpj\dxdy

< C   V    / / \d<pj\dxdy + C   V    / / \d<pj\dxdy
Qz;<3/  J   JQ 3z,>3/ J   J<2

<C ^yj + C   £   '(ß).    by(v)
Zj€Q' 3z,>3/

< Cl(Q') + Cl(Q)

<Cl(Q),

where C depends only on So and r¡o. Hence by Lemma 6, there exists u £

C(R2)nC(R+) suchthat

(4) du = h =
1

'fiF
OF

and supx6R |w(x)| < C(ô0, n0). Now define

F  „<•
gi B
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We first note that e±u^ £ C(5£) and on {x = 0} , \e±u&\ < C(ô0, n0). Now if

z £ D(Zj , X2) for some Zj then F(z) = aj((z - Zj)/(z - z7)) and by Lemma

3, since p(z, Zj) < X2 < n/3, we have

x<p^2iA<_!_<2
\B(z)\        \~[k¿j P(z, zk)      n

and hence,

(5) *      ,<\^<C(So,Vo).C(d0, i/o)      I-d(z)|

If z £ \JD(zj, X2), then by Lemma 2, |5(z)| > p2 and by (3), \F(z)\ > C,
and so we again have (5) for z ^ U^(zy > ̂ 2) ■ (5) now extends by continuity

to R2 . Thus gx, gj-1 £ C(R2 ), gx is bounded on RJ and so on {x = 0} ,

(6) l/C(ôo,no)<\gx(x)\<C(ôo,tio).

Also by (4), gx is analytic on R2 , and so by (6) and the maximum principle

applied to gx, g¡~ ' , we have for all z e R2

l/C(ôo,r1o)<\gx(z)\<C(â0,r1o).

Now define

g2 = hi-Fettf>)
/2

and note that gxB + g2f2 = 1 for all z e R2 . If |y2(z)| > e, g2 is clearly

bounded while if 0 < |/2(z)| < e, then by (iii) z ^ |J T¡■, which implies F = 1
and so

g2 = ]r(l-euh)^-u   as/2^0.
/2

Hence g2 £ C(R2 ), max^6R \g2(x)\ < C(ô0, n0), and by (4), g2 is analytic

on R2 . Also g2 is bounded on R2 so applying the maximum principle gives

! I S"21100 < C(ôo, no). Theorem 1 now follows from a normal families argument.

Before constructing the regions 7}, 7} we require the following lemma, the

proof of which is given in Theorem 3.2 in Chapter VII of [3].

Lemma 7. Let f(z) be a bounded analytic function on {y > -r} with \\f\\oo <

1. For 0 < ß < 1, 0 < 7 < 1 there exists a = a(ß , y), 0 < a < 1 such that for
any cube Q in {y > —r} with base on {y = -r}, supr(Q) \f(z)\ > ß implies

\{z £ Q: \f(z)\ < a}*\ < yl(Q). Here T(Q) denotes the top half of Q, that is
T(Q) = {z£Q:^z>\l(Q)-r).

We first construct the regions 7}, Tj corresponding to a fixed zero Zj of

B, and without loss of generality, we assume zj belongs to the top half of

the unit cube (2o = {(x, y): 0 < x < 1, —r < y < 1 - r}, which we think

of as being dyadic. The construction we use is very similar to the first part

of the corona construction described in Chapter VIII of [3]; the assumption

Zj £ T(Qo) implies supr^ |/2(z)| > px and so (2o is a case I cube in the

construction described in [3].

Using Lemma 7, choose ¡VeN so that whenever Q is a cube in {v > —r)

with base on {y = —r} and sup^g) |y2(z)| > px, we have

(7) \{z £ Q: \f2(z)\ < 2-<"-3>n < (X2/l6)l(Q).
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We can assume N is sufficiently large so that 2-(A,~3) < px . For each dyadic

cube Q ç Qo with base on {y = -r}, partition T(Q) into 22N~l dyadic

squares Sj. Let

X{Qo) = \J{Sj C Qo: Sj nit # 0,   inf |/2(z)| < 2~N) .

Then if e = 2-<A'+1),

{z£Qo:\f2(z)\<2e}c¿%(Qo),

while by Schwarz's lemma, if z, w £ Sj ç 31 (Qo) then

\f2(z) - f2(w)\ < 6 2~N,

which implies

sup   |/2(z)|<2-("-3>,
z€^(C2o)

and hence by (7)

(8) \^(QoY\<X2/l6.

Now let Qi, Q2 denote the two cubes in {y > -r} , base on {y = -r), and

each having a common vertex at z;. Note that 1/2 < l(Q¡) < 1, / = 1, 2

and since n > 3/4, Qx and ß2 contain no other zeros in their respective

top-halves. Now by Lemma 5,

J2   \D(zk,4X2)*\<20   Y,  X2yk<lOOX2logX-<^.
Zlc&Ql Zt6<2l
k*j k¿j

Similarly

and hence,

£   \D(zk,4X2)*\<^
z*6Ö2
k*j

X2
(9) 53     \D(zk,4X2y\<

zkeQiUQ.2
k*j

Also if zfc g <2i U ß2 , 3z¿ < 1 , then

(10) £>(z/,4A2)*nZ)(zyt,4A2r = 0.

Now since \(dD(zk, X2) n Qo)*| > A2/4, (8)—(10) imply there exists u>o =
xo + iyo £ dD(zj■, X2) n Qo such that the vertical line x = Xo is disjoint from

both 31 (Qo) and (j{D(zk, 4X2): Szk < 1} and such that Wq lies above no
other point on dD(zj, X2)llQo with this property. In particular, the line x = xo

is contained in cubes Sj not contained in 31 (Qo) ■ Since r > 0 we have

min{l(Sj):Sj'rit£¿0, Sj g 3?(Q0)} > 0

and hence, there exists X\ ^ Xo on {y = 0} n dQo such that if x2 is between

xo and xx then the vertical line x = Xi is disjoint from 32(Qo). Let

Po = 3 min{2|x0 - x{ \, X2yx, ... , X2yN}
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and choose X3 between Xo and xx so that |xo - X3I = po ■ Assume without

loss of generality that xo < X3. Define

Tj = {z £ R2 : xq < 3î(z) < X3, there exists wx £ D(zj, 2X2) such that

S(z) <%(wx)}uD(zj, 2X2)

and

Tj = {ze Tj : dist(z, dfj\{x = 0} ndTj) > ±/>0} .

Standard arguments give </>_,• £ Cg°(R2 ), 0 < 4>j < I , 4>j = 1 on 7}, 4>} - 0

on 7J , \d<pj\ < C/po, and such that if Q is any Carleson cube in R2 , then

11 \dcf>j\dxdy<Cmin(l(Q),yj)

for some absolute constant C .

Repeat the construction for each of the remaining zeros Zj, and it remains

only to verify properties (iii) and (iv). In verifying (iii) we can assume zy

is the zero considered above. If z e T¡\D(z¡, 2X2) then z ^ 3t(Qo) and

hence \f2(z)\ > e. If z e D(z1■, 2X2) then \B(z)\ < 2X2 < px. This implies

l/2(z)l > Pi > 2~(N~y > e , and (iii) follows. To prove (iv), suppose that 7), Tk
are the regions corresponding to Zj and zk , and we can assume y, > yk . For

convenience we assume z7 is the zero considered in the construction above.

First, X2 < 3A1 implies D(z¡, 2X2)nD(zk , 2X2) = 0 by Lemma 2. D(z¡, 2X2)

is a Euclidean disc with center

./1+4A2\

Hence y; > yk implies ^scj > ?sck . Since Tk* = D(zk, 2X2)*, this implies

D(zj , 2X2) nfk = 0 . Thus Tj nfk = 0 follows from the second part of (iv),

which we now prove. If z e Tj\D(zj , 2X2) then z is at a distance < \X2yk

from a vertical line that is disjoint from D(zk, 4X2). Together with the fact

that 7)* = D(zk, 2X2), this implies dist(z, Tk) > C(ôo, r\o)yk and (iv) now
follows.

This completes the proof of Theorem 1.
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