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ABSTRACT. A conjecture of Grenander and Szegd for the traces of Toeplitz
matrices generated by the Poisson-Charlier polynomials is proved.

The Poisson-Charlier polynomials {p,,(x)}, m > 0, are defined on the set X
of all nonnegative integers [6, p. 34]. This is a complete system of orthonormal
polynomials in the space /> = [2(X, j(x)), where j(x)=e %a*(x))"', a>0,
is the Poisson weight: 372 o py (X)Pm(X)j(X) = Ok -

Let g(x) be a real almost periodic function (in the Bohr sense) on X . Then
the matrix

{Epk X)Pm(x)q( )j(x);k,m=0,l,...,n—1}

is called the Toeplitz matrix, generated by the polynomials {p,,} and the func-
tion ¢q.
Here we prove the following conjecture of Grenander and Szego [2, p. 174]:

1 .1 X
(1) lim_-trace [M(q N =n11r1100;1-2[q(x)] , k=0,1,....
As a consequence one obtains the asymptotic distribution of the spectrum of
the matrix M,(q) as n — +oo. Namely, let N(a, f, n) be the number of
all eigenvalues of M,(q) lying on the segment [a, £]. Deﬁne the distribution
function D(a) by the lower limit: D(a) = lim D D x(a—q(x)) where

—n—+4oo n
x 1s the characteristic functlon of the interval (0, co). Then we have

(2) lim ~N(a, 8, n) = D(8) - D(a)

n—+oo N

if @ and g are points of continuity for D.
Proof of (1). Let E, be the operator in /2 with kernel

n—1
(3) e(n, x,y) =Y Pm(X)Pm(y)
m=0
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and let Q be the operator of multiplication by g. Then we have
(4) trace [M,(q)]* = trace ok

where O, = E,QF,. Indeed, if T is the infinite matrix M (q), considered
as an operator in /2, then it is not hard to see that

(5) trace [M,(q)]* = trace TX
where T, = P,TP, and P, is the operator of multiplication by the charac-
teristic function of the set {0, 1,...,n — 1}. On the other hand, the op-

erators 7, and Q, are unitary equivalent: Q, = F~!T,F where F is the
Fourier transform with respect to the complete system {p,,}, thatis, (Fu)(m) =
Y oo Pm(X)u(x)j(x) . Thus (4) follows from (5).
Further, the operator Q, has a kernel
o0
On(x,y) =) e(n, x, z)e(n, z,y)4(2)j(z)
z=0
and E, is an orthogonal projection. Therefore
o0
trace Qn = Y _e(n, x, X)q(x)j(x).
x=0
Since Q% = E,Q%E, — S;:S, where S, = (id — E,)QE, , it follows that

o]

trace Qf = ) _e(n, x, x)g*(x)j(x) = IS4ll3
x=0
where || - ||> stands for the Hilbert-Schmidt norm [1]. Analogously, Q% =

E,QKE,+Sy  , where Sy , isasum of 2~!—1 terms, each of them containing
as a cofactor S; and S, . Therefore

(6) trace O = Y _e(n, x, x)q*(x)j(x) + Ry i, k=1,
x=0
(7) Ru il < Q@ = DIglF2USul3,  Rai=0

where ||g|| = supycx |g(x)|. Further, the operator S, has a kernel
Su(x,¥) =D (a(x) —q(2)e(n, x, 2)e(n, z, y)j(2),
=0

hence

(8) 1u13 = 5 3 D" (a0x) — g Ple(n, x, 9)PS(x) ().

x=0 y=0

Thus, the formulas (6)-(8) show that it suffices to know the asymptotics of the
function e(n, x, x) as n — +oo and an estimate of e(n, x, y) if x # y and
n — +oo. We shall prove the following uniform asymptotics and estimates,
which are sufficient for our purposes:

Case 1. 0<x<n(l-n9), where 0<d < 1/4.

9) e(n, x,x)j(x)=1+eV"0(1), n— 400
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Case 2: x >n(l1+n79).

b
: N o n__ xn .
(10) e(n,x,x)j(x)=n exD(l+n5 T+m7)’ n— +oo;

Case3. 0<y<x<n(l-n9).

(11) ((x —y)e(n, x, ¥)%j(x)j(y) = ne"V*0(1), n— +o00;
Case 4. For all x and n

(12) e(n,x, x)j(x)<1.

Before proving these properties, we shall show that (4) and (6)-(12) imply
(1). Namely, it is not hard to see that

oo

(13) D e(n,x, x)q"(x Zq (x) + llgl*o(n) n — +oo.

x=0 =0
On the other hand,

n(l-n=%) x— 1
I1Snll3 < —q)le(n, x, y)|%j(x)j(y)
x=1
o0
+4|q|I? Z e(n, x, x)j(x).
x=n(l=n-9)

Therefore, if g is a Lipschitz function with a norm

gl = iUI;IQ(X) —g)lIx =y  +lqll,

we obtain
(14) ISa13 = llglifo(n),  n— +oo.
Thus (6)-(8), (13), and (14) yield the asymptotics

(15) trace Qf = Zq ) +24lgl*2lglifo(n),  n— +oo.

Hence, (15) and (4) imply (1) if g is a Lipschitz function. It remains to notice
that the Lipschitz class is a dense set in the space of all almost periodic functions
with respect to the supremum norm ||g||. Thus (1) is proved.

Proof of (9)-(12). We shall use the formula

e+im
(16) e(/l,x,y)=—1—-./ MU, x, y)HA, w)dw, e>0,
2mi e—in
where e(A, x, y) is the step function: e(A,x,y) =e(n,x,y) if n <A<
n+l,n=1,2,..., and e(4,x,y)=0 if A< 1. Here

Utw, x,5) = [~ ede(z, x,) = e p, (x)pu(y)
n=0
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is an entire 2izm-periodic function with respect to w, and moreover (see [5])
for y > x we have:

U('w, X, y) = eXp(ae—w)Z (z) (z) k!a—ke—wk(l _e—w)x+y—2k.
k=0

In particular, Y72, p2(x) = U(0, x, x) = 1/j(x), whence the estimate (12)
follows immediately. Finally, the function s — H(s, w) is l-periodic and
H(s,w)=1(sh%¥)lexp(} —s)w if 0<s< 1.

For proving (16), we use the relation

(17) w“U(w,x,y)=/ e Me(d, x, y)dA.
0

Since the function A — e(4, x, y) is continuous only from the right, we pass
to the average:

h
en(d, x,y)= %/0 e(A+u,x,y)du, h>0.

Notice that e,(4, x,y) — e(A, x,y) as h —» +0 for every (4, x, y). From
(17) it follows that

e —1Uw, x,y) ® i
h ) —/0 e *ey(A, x,y)dA,  Rew >0,

so the inverse Laplace formula gives the equality

&e+ioo hw _
/ € lU(w,x,y)dw’ e>0.
£—1i00 h w2

Taking into account the periodicity of the function w — U(w, x, y), we obtain

ep(A, x,y)= i

e+im

(18) eh(l,x,y)=_2.1;.l../. e‘"’U(w,x,y)g(”’“’);g(o,w)dw
E—Im

where g(s, w) =e” f(A+s,w) and f(s, w) =Y go__ (€% /(w + 2ikn)?).
It is clear that the function s — f(s, w) is 1-periodic and

f(s,w)= % (sh'(—zli)_1 (cth%— 1 +2s)exp (%—s)w if0<s<l.

Therefore, lim;,_ A~ !(g(h, w)—g(0, w)) = H(A, w), and the Lebesgue limit
theorem is applicable. So (16) follows from (18).
Further, we have the estimate

(19) lji(x)U(w, x, x)| < exp(4v/ax|sh¥| — xRew) exp(ae Re™ — q).
Indeed, it is obvious that

X 2k
U(w, x, x) = exp(ae™")a *xle~** Z (i) % (2\/Esh%) .

Since (F) < xK(k!)~! and ";_o(k)~%(2vax|sh%|)* < exp(4y/ax|sh¥|), the
estimate (19) holds.
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To prove the asymptotic bound (10), we use formula (16) with & = (1+n°%)~!
where 0 < 6 < 1/4. Since x > n(l —¢)~!, we have x > 16a8‘4ch2§ if
n'=% > (1 4+ n=9)316ach®% , therefore (19) yields

(20) i) U(w, x, x)| < e ®1=9% if x > n(l+n%),n>C(, a).

Taking into account the bound |H(n, w)| < Ce~! if Rew = ¢, we obtain (10)
from (16) and (20).

For proving (9), we notice that the function w — e**U(w, x, y)H(A, w) is
2im-periodic, so the Cauchy formula and (16) imply

—1+in
(21) e(n,x,x)=U(0, x, x) 2 / e™U(w, x, x)H(n, w)dw.

1—in
Since x < n(1-n=°%), 0 <4 < 1/4, we have 4\/ax|sh¥|+x —n < —/n if
n>C(d,a), Rew =—1, so the estimate (19) with Rew = —1 shows that
i(x)U(w, x, x)| < exp(ae — a)e V" if x < n(1 — n~9%).

Thus (9) follows from (21), since j(x)U(0, x, x)=1.

The proof of the estimate (11) is based on the Christoffel-Darboux formula:
(22) (x —yle(n, x,y) = Van(pa(X)Pn-1(y) — Pa-1(x)Pn(¥)) ,
which follows from the recurrence relation [5]:

/lnpn+l(x) =(x —a—n)pp(x)— )-n—lpn—l(x) s An—1 = Van.

According to (9) we have
(23)

j)pR(x)=eV"0(1), n—+o0if0<x<n(l-n"?%), 0<d<i.

Therefore the estimate (11) is a consequence of (22) and (23).

Proofof (2). Itis sufficient to consider the points «a, f on the segment [m, M],
where m = inf q( ), M =supq(x). For the sequence of distribution functions

=1 Zx _o X(a —¢q(x)) the inequalities 0 < D,(a) < 1 hold, hence there
exnsts a 11m1t Di(a) = lim;_,o Dy;() . Then formula (1) can be written in the
form:

Jim L trace [Mu(q))f = /mM okdD(a).
Therefore, we can apply the method of Grenander and Szego [2, p. 129] and
conclude that
(24) lim L N(a, 8, n) = Di(B) - Di(a)
if o« and S are points of continuity for D;(a). Since the functions D;(a)

and D(a) coincide on the set of the points {a} of continuity [4], formula (2)
follows from (24).
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