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Abstract. For certain pointwise dual ergodic transformations  T we prove

almost sure convergence of the log-averages

1      A       1
logA^na(«)^

and the Chung-Erdös averages

*—'   M/7ÍM      *—'

i    A  iE^/°ï*   í/€^í)
loga{N) £j a(k)

towards / /, where a{n) denotes the return sequence of T .

I. Introduction

Let (ß, «^, m, T) be a conservative, ergodic infinite measure preserving

dynamical system, where m is a nonatomic, rr-finite, infinite measure.

For a measurable function / denote

Snf=J2f°Tk.
k=l

We are interested in the behaviour of sums of the form

I \ ) !       V^    $nf    _        I       A        1        A   r 0 jk
1 ' log N ¿-^ nain)     log N ¿" nain) ^

6       /i=l        v   ' b       n=l        v   ' k=l

for some (and hence all) functions f £ Li im) and

l "      i
(2)-Y — f°Tk
{ ' logain)f^aik)J

for functions / G L+im), where ¿z(«) > 0 are constants. The first sums will

be called the log-averages (of the normalized partial sums) and the second sums

the Chung-Erdös averages (as they were first studied in [5]).

Received by the editors June 11,1990.

1980 Mathematics Subject Classification (1985 Revision). Primary 28D05; Secondary 60F15.

© 1992 American Mathematical Society
0002-9939/92 $1.00+ $.25 per page



116 JON AARONSON, MANFRED DENKER, AND A. M. FISHER

In particular, we are interested in situations where these averages converge

to J f for every / G L+im), for some sequence of normalizing constants

¿j(«) . Not every conservative, ergodic measure preserving transformation has

this property (see [2, §2; 8, Proposition 2.7]).

Examples where the log-averages converge have been given in [4, 8] (com-

pare also [7]). Chung and Erdös [5, Theorem 6] proved that the Chung-Erdös

averages converge for any conservative, ergodic Markov shift.

In this paper, we consider the convergence of the averages for pointwise dual

ergodic transformations T [2, §1]. Denote by T the dual operator of T :

Eooim) —> Loo(m), restricted to Li(m). The assumption that T is pointwise

dual ergodic means that there are normalizing constants ¿z(«) such that

a.s

k=i

for every function /eLi(m). The constants ¿i(«) are given by

"   r -
¿z(«)~E / TklAdm,

k=ijA

where A £ &~ is a set of measure one such that the convergence in (3) is a.s.

and in Lxim\A). The sequence ¿*(«) is called a return sequence for T.

Although convergence of the log-averages is not in general equivalent to con-

vergence of the Chung-Erdös averages, we have

Proposition 1. Let ¿z(«) be regularly varying with index a > 0. Then, for every

positive function f £ L+im), we have

1*1 f
lim-71—- Y —¡-/o Tk = I j dm    a.s.

N^oologaiN) f-^ aiky JJ

(3) Hm -j-Y?kf= [ fdt
n^°°ain)f- V

k=i

if and only if
i      N      i r

lim —-^Y—T-,S„f=     fd
N^oologN¿-~> nain)    J     J

m.    a.s.

In general:

Proposition 2. For any f £ L+im) the intrinsic averages

i Nl ^-\ Un _, y-

logaiN)¿^aJñy  nJ
n=l

converge a.s., where u„ = ¿z(«+l)-¿z(«), if and only if the Chung-Erdös averages

(2) converge.

The proofs of these propositions are elementary and left to the reader.

In §2 we prove second order ergodic theorems for log-averages (1).   The

method of proof uses an estimate of the variances of ( 1 ) in terms of

(4)        <B(Af,e) = supj   fnJE)-  l<n<Nx~E\        (N>l,e>0).

We show in Theorem 1 that ( 1 ) converges in measure on sets of finite measure if

for any e > 0, <P(A/, e) -> 0 as N —► oo . Moreover, imposing logarithmic rates
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in this convergence (specfically, condition (*) in Theorem 2) and a logarithmic

asymptotic error in (3) for suitable /'s, we obtain a.s. convergence for the

log-averages ( 1 ) in Theorem 2.

The conditions on <P(A7, e) are always satisfied if the return sequence

(û(n))„>i is regularly varying with positive index. The "asymptotic error" con-

dition always holds for Markov shifts. The theorem of Chung and Erdös states

that for Markov chains the averages (2) converge to / f dm a.s., and hence by

Proposition 1, also the log-averages converge a.s., if the return sequence is reg-

ularly varying with positive index. In fact, we show in §2 that a.s. convergence

holds for certain slowly varying sequences a(n)'. This implies that there are

Markov shifts for which the log-averages converge a.s., though this cannot be

deduced from the convergence of the Chung-Erdös averages by Proposition 1.

As another application of Theorem 2 we obtain that number-theoretical trans-

formations in the sense of Thaler [ 10] have convergent log-averages when the

return sequence a(«) satisfies (*).

The conclusion of Theorem 2 also applies to the shifts of Markov processes

that are recurrent in the sense of Harris, and whose return sequences satisfy

(•). See [2, §1, Example 2].
The method of proof for the result of Chung and Erdös is a cancellation

argument. A similar argument is used in §3 to show a.s. convergence in (2) for

the real restrictions of conservative, Lebesgue measure preserving, odd inner

functions of the upper half-plane.

2. Log-AVERAGES

In this section let T denote a pointwise dual ergodic transformation on the

nonatomic, a -finite, infinite measure space (R,&", m). Then there exists a

set A £ ¡F of measure one and a sequence ïï(«) such that

(7) ain) ~ ¿T(«) Î oo

and

n

(8) Ef^w^(«)
k=l

for x G A and n > 1. This can be shown by a successive use of Egorov's

theorem. Since ¿z(«) may be replaced by an asymptotically equivalent sequence

we assume that a(0) = 1 and

(9)

Write

fl(/i)= 1+ [ SnlAdm.
JA

(10) 5g|\ = l+ßn       in>l).
uyri)

We now state our theorems for log-averages.

Theorem 1. Suppose that for every e > 0

lim O(N,e) = 0.
N—>oo



118 JON AARONSON, MANFRED DENKER, AND A. M. FISHER

Then, for any f £ Lx im),

. N . n .

lim     1    Y-^YfoTk  =   / fdm
N^logNf^nain)^/ JQJ

in measure on any set of finite measure.

Theorem 2. Suppose that

(*)       3e,y>0   3    <S>iN,ilogN)-?) = o(^-^y^j    as N -+ oo.

Moreover, assume that ßN defined in (10) satisfies

ßN

Then for every f £ Lx im)

ßN = O ( --—- 1     as N -* oo.
1 ilog N)y '

lim r^E—{T-,ílfoTk = ff*
N^oologN ¿jna(n) f-f* A/

TV
1 ¥->      « _7, /

n=l ---v-/ fc=,

Corollary 1. Lei i£l,&~, m, T) be a conservative Markov shift with return se-

quence ain) satisfying (•). Then for every function f £ Lxim)

N

lim
n—oo log A ^-j «a(«)

«=i

¿w¿/

E-TT5"«/  =    /  fdm      as-
{-* nain) JQ

1        x^     1

Remark 1. Let

lim ;—^TTTrV-rrT/0 Tk = / fdm    a.s.
N^^logaiN)f^aik)J JaJ

ain) = exp(i"^-dt)        (« > 1).

If nit) is decreasing then 0(Ar, e) —► 0 as A —» oo for every e > 0 if and

only if

(11) lim nit)logt = oo
t—»oo

and (•) holds if and only if

i-a(12) lim»7(0(logr)
t—»oo

for some ô > 0.
There are Markov shifts with slowly varying return sequences satisfying (12).

For these Markov shifts, the log-averages converge a.e. by Corollary 1. On the

other hand, it can be seen easily that if T is a Markov shift with return sequence

log N, then the log-averages do not converge in measure.

Remark 2. Suppose that T is a number-theoretical transformation in the sense

of Thaler [10]. Then (see [3]) T is pointwise dual ergodic, and, indeed, there

is a set A of measure one such that for all p, n > 1

n

YTklA<P + (l+£P)a(n)

fc=i
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uniformly on A , where ep = 0(6^) for some 6 < 1.

Suppose that this is the case with ep = 0((logp)~s) and that a(n) satisfies

(*). Then loga(«) > (e/2) log« for n large, where e is as in (*).

Set pn = ¿z(rc)(log«)~£/4 . Then

YJfklA<(l + -^)+OHlogpn)-ô)yin)

= (1 + (log«)-£/4 + OHlogPn)-s))ain).

Now logpn > logain) - (e/4)logw > (e/4)log« , and so

n

^^1^(1 + 0((log«)-min(£/4'á)))¿z(/t)

k=l

uniformly on A and Theorem 2 applies.

The proofs of our results are based on an estimate of the variance of the

log-averages. We denote S„ = Y!l=x U ° Tk in > 1), S0 = 0, TN =

En=i(Sn/nain)), and f„ = ELi TklA in > 1), f0 = 0. Finally, we shall
use the expectation sign E to denote the integral with respect to the measure

m over the set A .

Lemma 1. If n < m, then

n

ESnSm < E(«(w - k) + a(n - k))lk,
k=0

where lk = ¿7(rc) - ¿7(rC - 1) and where fl(-1) = 0.

Proof. Using the duality of T and T, we have

n     m      .

£SA = EE     lA°TklAoTldm
k=i i=i Ja

n       . n-l    .

= E / {USm-k) °Tkdm + Y     ilAS„-k) oTkdm + a(n) - 1
k=i Ja fc=i Ja

n       . n-l    .

= E/ fklASm_kdm + Y / fklASn_kdm + ain)-l
k=ijA k=iJA

n       . n—l    .

= E / in - fk-i)Sm.k dm + E / ifk - n.x)Sn.k dm + a(n) - 1
fe=lJA k=lJA

n       . n-l    .

= E/ niSm-k-Sm-k-X)dm + Y     TkiSn_k-Sn_k_x)dm + ain)-l
i.   , J A ,.   , J Ak=lJA

+ l f„Sm-„-idm.
JA
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By (8) it follows that

n

ESnSm <Yaik)ia(m - k) - aim - k - !))
£=1

n-l

+ E a(k)(a(n - k) - ain - k - 1)) + ¿z(«) + a(«)¿ü(m -n-l)
k=l

n

< E(fl(w ~k) + ain - k))iaik) - ¿z(A; - 1)).
k=0

Lemma 2. For every e > 0, N > 2, and N > n > 1

N        1 1     A/
E-rr-^  (e + 0(A,e) + (logA)-1)-^—.
^ maim) ain)
m=n v     ' v   '

/•roo/. Fix A > 2. For ra > A1"6 it follows that

£        i i i
E-r^<^r(l+logA-logA1-£) = —-(e +(log A)"1) log A.
*—' maim)     ain) ain)
m=n

Tl-eIf n < A1 "£, then

Y-\—<4-UiN,e)   Y   -+Y-)
¿-^ ma(m)     a(n) \ ^—'     m     z-' m I
m — n \        / \     /    \ «,_r« Arel i 1 m — n 'm={nNlX+l m=n

= [e + <D(A,e) + (logA)-1]í
hlogA

ain) '

Lemma 3. For N > 2

N , N

Y —7S T —\—, T kain - k)
(13) ti na^ tn ma^ to

< (1 + supß„))ie + Q>iN, e) + (log A)"')(l + log A) log A.
n>l

Proof. Since ¿z(« - k) < ain) fork<n the left hand side in (13) is bounded

by

y>y^     ain)ajn)     = y^ y- (1 + ß„)a(n)

¿~i Z^ nma(n)a(m)     ¿-*1 ¿-1    nma(m)
n=l m=n V '   v     '        n=l m=n v     '

By Lemma 2 it follows that

EE {lïJ"(l[n) <(l+supj3„)(e + a)(A,e) + (logA)-1)(l+logA)logA.
¿—i i-^i    nmaim) n>i
n=l m=n x     ' -

Lemma 4. For any e > 0 and A > 2

AT        . AT . n N   R

2Y—T-,   Y   -7—,yikaim - k) < (1 +logA)2 + 2E~ log A.
¿-Í «¿z(«)   ^   maim) z^ ^ «
n=l        v   y m=n+l v     ' *=0 n=l
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Proof. Write

N       N . n

2Y Y —i s i—;Yaim-k)k
¿-~i  /s   nmaimaim) ¿—'imain)aim)
n=l m=n+l y   '   v    ' k=0

N      N      1 4. Ñ N   R

^2E   E   1^ = (l+logA)^ + 2E^logA.
n=l m=n+l n=l

Lemma 5. For any e > 0 and A > 2

Yf<iYil)e + yiN£))il+logN),
k=i

where

y(A) = sup{& : A < k}.

Proof. Obvious.

Proposition 3. For every e > 0 and A > 2

Var(ïoiAriV) - [2y(N£) + (5 + W))(e + *iN,e) + ilogN)-x)](^^

Proof. Since EÍTn) = log A the statement follows immediately from Lemmas
1, 3, 4, and 5.

Proof of Theorem 1. By Proposition 3 and Chebychev's inequality we obtain

that

1      N      1

log N ¿^ nain)
n=l

in probability with respect to m restricted to the set A .

The theorem then follows from general arguments. The convergence of ( 14)

in probability on A is equivalent to the fact that every subsequence contains a

further subsequence Nj so that (14) converges along this subsequence a.s. on

A . But the set of convergence is /"-invariant as is the limit, and so by ergodicity

this convergence is to 1 a.s. with respect to m, and hence the convergence in

(14) is in measure on any set of finite measure. In order to obtain the statement

for arbitrary /el|(m) apply Hopfs Ergodic Theorem to every a.s. convergent

subsequence.

Proof of Theorem 2. The proof is similar to that one of Theorem 1.

Under the assumptions of the theorem

EiTN - EiTN))2 = 0((logN)2~s),

where ¿5 = min(e, y). This follows from Proposition 3. Choose r so large that

rS > 1 . By the Borel-Cantelli Lemma it follows that

lim —■—-TV  =  1
P^ooprlog2

almost surely. The theorem then follows from the monotonicity of Tn and the

asymptotic equivalence limp^00prip + l)~r = 1 .
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Proof of Corollary 1. If T is a Markov shift, then we may take A = {(x,),>i :

X[ = a} where a denotes some fixed state. It is well known that the corre-

sponding ß„ = 0, where ßn is defined by (10).

3. CHUNG-ERDÖS AVERAGES FOR INNER FUNCTIONS

Let T : ilR2)+ —► iIR2)+ be an analytic endomorphism of the upper half-

plane ilR2)+ . It is well known that T has a representation

(15) Tiz) = az + ß+ f  l-±Ilßidt),
Jr t- z

where a > 0, ß £ IR, and p denotes some positive measure on the real line.

T is called an inner function if for a.e. x G IR

limTix + iy) =: T(x) £R,

i.e., p is singular with respect to the one-dimensional Lebesgue measure. An

inner function is called odd if r(-x) = -7"(x) (x G ZR), or equivalently:

ß = 0 and p is symmetric, i.e., piA) = pi-A) for A c IR, see [I, §2]. In

this section we shall assume that T is odd and we shall consider the dynamical

system defined by T on the real line IR. Moreover, we shall assume that a = 1,

since in this case the Lebesgue measure X on IR is an invariant measure (see

[9]).
Each point z = a + ib £ iIR2)+ defines a Cauchy density function

(16) *'('> =»[(*-a)2**]'

Define

k

(17) a(£) = EM;>

where

(18) uj= [ faoTJ.frdA.
Jr

In the subsequent proof we shall make use of the following fact about the rela-

tion of T and <pz.

Lemma 6 [9]. Denote by Pz the Cauchy distribution with density cpz. Then

(19) Pz°T-l=PTiz)

and

(20) fcpz = cpT{z).

Using Lemma 6, it is shown in Corollary 3.5 in [1] that T is conservative if

and only if a(«) —» oo as « —» oo and in this case, T is pointwise dual ergodic

with return sequence ain). The main result in this section is
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Theorem 3. Let T be a conservative odd inner function of the upper half-plane

restricted to the real line. Then

1 N     1
(21) lim i—nxY-rnh°Tk = l

n^oo log¿2(A) z-^ a(k)

and for every function f £ L+(X),

I       JL    1 r
(22) lim i—-nxY-rnf°Tk= I fdk

n^oo loga(A) f-/ia(k)J JRJ

almost surely.

Proof. It suffices to prove the statement (21), as (22) follows from (21), by

Proposition 2 and Hopfs Ergodic Theorem.

Next observe that it suffices to show (21) /^-almost surely, since X and the

Cauchy distribution P¡ are equivalent.

We denote by E the expectation with respect to the measure P¡ and by

n=l     v   '

Then

•rt) = T,^jti°r>.4>idx
(nf

+ 2Y y , ' , [ & ° T" ■ & o t»
¿-f   f^, ain)aim) J ^'

n=l

N-l      N

n=l m=n+l

and
N j N-l      N

U„Un(£(riV))2 = E^2   +   E   E   -TT
"      ¿-^ a(n)2       ¿-^   ¿-^   ain)cMn)2       ¿-^   /-J   flfn)a(m)

B=l     v   ; n=l m=n+l    v   '   v     '

Note that r(/JR+) C HR+ . Therefore we can define c„ by T"ii) = c„i. It is

not hard to see that c„ T oo and indeed that c„ » \fh~ (see [1]). Then by (19)

and (20)

j fr ■ fa o T" ■ (pi o T"+k dX = J ¿>r«(/) • 4>i ■ (¡>, o T

(23) = Jfk(4>l.(pCni)-4>,dX

For any b £ IR+ we have

h h
nL4>i • 4>bi(x) =

dX

[x2 + l][x2 + ¿>2]     [x2 + lp2-l]     [x2 + b2][b2- 1]

bit tí

and

nb
(24) n1     cbr<t>bidXn2 j<pi

/j2 _ i     b2-l      b+l
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(25) = ̂ T)*"' ' íiíFñ*"''

and integrating with respect to P¡ yields (use (23), (24), and (25))

J tp, - fa o T" ■ <f>i o T"+k dX= I Tki<t>i ■ <f>Cni) • <P, dX

= n(c2_ H cn J 4>i-<f>ckidX- J 4>¡■ 4>Cn+kidX

i
*H4-i)

It follows from this and (24) that

EiT2) - iEiTN))2

(26)

n=l

where

N-n

Ck + 1       Cn+k + 1

N    i    r r i      i     N~x    i
= Y-T^ï <P2i'<t>cnidX- -y.-T-j    +2Y ^-TT^i^'")^ain)2[JY'   Yc"' n2ic„ + 1)2J        ^ tt2¿z(«)    v        y

2iN,n)- ya{n + k){c2_l)[Ckn+l     Cn+k + l)

E
(t=n+l

1

aik)icn + l)ick + If

Now

and

n=l     v   y    J n=l        v   y

Cn
N-n ,

y* _!_ ,

¿^  ain + k)ic2-l)\ck + l     cn+k + l
K=n+\

.)_L
J     aik)icn + l )(0t + l)

V-n

* E
k=n+l

N-n

\C2-l        Cn + l)a(k)(ck + l)

T i (_
¿~*L, ain + k)ic2-l) \ck + l
k=n+l

N-n

C„+k + 1

-« E 1

^(/cXc + iRc + i);

°ÍE  ^=0(M2nlog.(A)).
U=n+1

a(k)
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Moreover
n

U„Uk
1 1 /y^_I_       cn I _ Q I y^ _u>

^ ain + k)ic2 - I) [ck + I     cn+k + l\"     \£¿ a(niin + k)

=o feE"')=0(""'-
Using these estimates in (26) we arrive at

/ N~l       2 \

EiTN)2 - iEiTN))2 = 0[il + E ^Jy) log*(A)J = 0(loga(A)),

since 2^«>i uniain))~x < °° ■   This is because c„ > d^Jn for some constant

d > 0, and un |, hence u„ < «_1a(«) and

,2 i    °°E^E<=-"!<
fc=i   v  ; fc=i

It follows that
í N

a(k)
VarjE —

Nt=l

Choose a sequence Nk suchthat Z)¿>1(log¿j(AA:))_1 < oo and

logq(Afc)

logaiNk+x) -   '

e.g., choose  Nk = inf{m : aim) > exp(/c2)}.   Then, by the Borel-Cantelli

Lemma, for any n > 0,

oo / oo . \

E/>,-({> : TNk-EiTNk) > nlogaiNk)}) = O L-2£-_^j < oo.

Hence lim^^ r^/log a (TV/,) = 1 a.s. and therefore we obtain

T
lim-TTjr = 1       a.s.

/v—oo log a (A)

as in the proof of Theorem 2.

Remark 3. If ¿z(«) is regularly varying with index > 0, then we also have that

N
I       „    ,. I     ,   ,.

a.s.
na(n\   ""        Iw,"

n=l

by Proposition 1.

We show finally that there exist odd inner functions with a(n) any regularly

varying sequence of index in (0, 1/2). This result extends Lemma 3.7 in [1].

Proposition 4. Suppose 0 < y < 1/2 and that bin) is regularly varying with

index y as n —> oo. Then there is an odd inner function

Tix) = x+ f l-±^dpit)
JR    t - X

such that ¿z(«) ~ bin) as n —» oo.

i    JL    i r
lim :—-V^—S„/ = / fdX

v-oo log A ^-J nain) JR
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Proof. Let

Tix) = x+ I X-±^dpit)
Jr   t-X

be an odd inner function where the symmetric measure p has a tail distribution

c,ib) = pi{t:  \t\>b}),

which is regularly varying at infinity with index -a, where a £ (1, 2).  Let

Tnii) = bni ■ By (15), the definition of T, we obtain that

bn+x=bnil+Fib„))       in>l),

where
f°°   t2 + 1

It can be shown as in the proof of Lemma 3.7 in [1] that
/■oo

Fib) = b-2 + 2il-b-2)Jo   cflibz){z2+l)2dz~dacflib),

where

0 < da = 2 /     7—r-—T ¿/z < 00.
Jo    (z2+l)2

Hence F(b) is also regularly varying at infinity with index -a .

Consequently C(è) = iFib))~x is regularly varying with index a and and

satisfies
Cibn+X) - Cib„) —► a    as n —> 00.

Therefore C(¿>„) ~ «a and

e„~C-'(«a)~Q1/,1C-1(«)

as n —> 00 , and is a-1-regularly varying.

Since 1 < a < 2, £„>. è^"1 = 00, whence T is conservative and the return

sequence satisfies (by (17), (18), and (24))

1 ^  In In

~ * eí ** ~ M1-"-1) ~ «(l-a-'Ja'^C-'in)"

In order to obtain the proposition from the last statement, let 0 < y < 1/2

and a v-regularly varying sequence bin) be given. Define a = yrr; G (1,2),

and set

y/(x) =
nil - a-l)all" è(x)'

Let p be a symmetric measure on ZR, singular with respect to Lebesgue mea-

sure, such that

Cpib)
day/~lib)

as b —> 00 . From the above, it follows that if

Tix) = x+ [ l-^dpit)
Jr   1 - X

then the associated sequence a(n) defined by (17) satisfies a(«) ~ bin).
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