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BANACH SPACES IN WHICH EVERY COMPACT LIES INSIDE
THE RANGE OF A VECTOR MEASURE

C. PINEIRO AND L. RODRÍGUEZ-PIAZZA

(Communicated by Andrew M. Bruckner)

Abstract. We prove that the compact subsets of a Banach space X lie inside

ranges of X-valued measures if and only if X* can be embedded in an L1

space. In these spaces we prove that every compact is, in fact, a subset of a com-

pact range. We also prove that if every compact of A" is a subset of the range

of an X-valued measure of bounded variation, then X is finite dimensional.

Thus we answer a question by R. Anantharaman and J. Diestel.

Introduction

In [AD] the authors proved that some Banach spaces have the property that

their compact sets are subsets of ranges of vector measures. They asked for a

characterization of these Banach spaces. We prove that they are those Banach

spaces whose dual can be embedded in an Lx space. We also prove that in

these spaces every compact lies in the range of measure with compact range.

These two assertions are contained in Theorem 3.6, which is our main result.

Another natural question arises if we require these measures to have bounded

variation; that is, which Banach spaces have the property that every compact

subset lies in the range of a measure of bounded variation? We answer this

question in Theorem 2.1, only finite-dimensional Banach spaces have this prop-

erty. We use different approaches to answer these two questions, but they are

interchangeable (see Remark 3.7).

In §1 we introduce the notations and recall some results about ranges of

vector measures. Section 2 is devoted to proving Theorem 2.1. This is done by

studying the finite-dimensional quotient spaces of the Banach space having the

property required in the second question.

In §3 we give the answer to the question by Anantharaman and Diestel. First

let us note that this question remains equivalent if we substitute compact sets

by norm null sequences. That is the reason why we introduce the spaces R(X)

and RC(X) of sequences in a Banach space X lying inside the range of an

A-valued measure or of an X-valued measure with compact range. The study

of these spaces allows us to prove our main result.  We complete this section
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with an example of a compact subset of the range of a measure that is not a

subset of any compact range.

1. Notations and preliminaries

We use the classical notation in Banach space theory. We consider all Banach

space over real numbers. If X is a Banach space, X* denotes its dual space,

and Bx its closed unit ball. For a subset K of X, co(K) is the closed convex

hull of K. As usual Co(X)(lx(X)) stands for the Banach space of norm null

sequences (absolutely convergent series) in X ; and lp is W equipped with the

norm || • ||p ,  1 < p < oo . In this case B% is its closed unit ball (B^ — B¡»).

We refer to [P] or [J] for the definition of the nuclear and p-summing norm

(1 < p < oo) of an operator T, denoted respectively by n(T) and np(T). If

X and Y are Banach spaces, N(X, Y)(Ylp(X, Y)) will be the space of nuclear

( p-summing) operators from X into Y.

We consider only countably additive measures defined on cr-algebras. If X

is a a-algebra of subsets of a set Q, X is a Banach space, and p: I —► X is

such a measure, we denote by \p\ the variation of p, which is an extended

positive measure; by X\(p) its total variation, that is, tv(p) = |//|(Q), and by

\\p\\ its (total) semivariation:

\\p\\ = sup{\x* o p\(Çl): x*eBx.}.

If xv(p) < +00, we say that p has bounded variation. The range of p is

denoted by xgp, that is, xgp = {p(A): A el.}.
We need several known results providing us the existence of plenty of ranges

of measures. We summarize them in the next three propositions.

Proposition 1.1. If X is a Banach space and p is an X-valued measure, then

there exists an X-valued measure v such that co(xgp) = xgu. In this case, we

have \\p\\ — \\v\\ and iv(p) = tv(v).

This proposition is very useful in order to reduce the study of compact sets

lying inside ranges of measures to the case of null sequences; for the proof of

the existence of v see [DU, p. 279] or [KK, p. 128]. For the last assertion see

[R].
The next proposition can easily be proved using a direct sum of vector mea-

sures [KK, p. 35].

Proposition 1.2. Let X be a Banach space and (pn) a sequence of X-valued

measures. If Y^\\pn\\ < +oo (resp. ¿^tv(¿0 < +°o)> then there exists an

X-valued measure p (resp. of bounded variation) such that

(a) xgp = £rg/i„ = {¿Z7=xxn: x« €rg/¿„}.

(b) INI < £11/^11, tv(/z) = £tv(/z„).
In particular, xg p„ cxgp for every n .

If K is a compact Hausdorff space and T: C(A") —» X is a weakly compact

operator, then there is an X-valued measure v defined on the Borel subsets of

K representing the operator T [DU]. A consequence of the regularity of v is

that _

C5(rgi/) = {T(f): feC(K), 0 </<!},

and the closure of T(BC(k)) is cö(xgiy-xgu). Then, by the last two propositions

and the properties of the representing measure, we have
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Proposition 1.3. If T: C(K) -»I isa weakly compact operator, then there exists

an X-valued measure p such that

T(BC{K)) = xgp   and   \\p\\ = 2\\T\\.

If T is l-summins, then p has bounded variation and tv(p) = 2nx(T).

Finally, we introduce a very special kind of ranges, which we call a countable

sum of sesments. If ]£ x„ is an unconditionally convergent series in a Banach
X, it is known that for any bounded sequence of real numbers (an) the series

Yj oinxn is also convergent, so we can define the sum of the segments [-xn , xn]

as
OO r     OO x

Y^[-xn,x„] = I ^2anxn: (an) e/«,, ||K)IU < 1 [■
n=X ^ n=\ '

This is a compact convex subset of X. The operator T: /oo —► X defined by

T(an) = Y, anXn is weak*-weak continuous (here weak* means that we consider

/oo as the dual of lx ).  T is a compact operator and we see

oo

(i) £[-*„, x„] = r^j = Tpj.
n=X

Then a countable sum of segments is the range of a measure (/œ is a C(K)

space) with compact range. The next proposition shows that a subset of a

Banach space lies inside a countable sum of segments if and only if it lies inside

the range of a measure with (relatively) compact range. We will use this fact in

§3.

Proposition 1.4. Let X be a Banach space and p an X-valued measure with

relatively compact ranse. Then there exists an unconditionally conversent series

J2xn in X such that
oo

xgp c ^2\-x„, x„].
n=X

Proof. There exist a probability measure X and a compact operator T: L°°(X) —»

X such that xgp c T(BL°°) and T is weak*-weak continuous (i.e.: T*(X*) c

LX(X)) [DU, p. 263]. First we prove the following:

Claim. In the above conditions, given e > 0, there exist m e N and two

operators R: f®» -► X and S: L°°(X) -A X satisfying

(a) T(BL~m)cR{B£) + S{BL~w).
(b) S is weak*-weak continuous and compact.

(c) P||<im| and ||5||<e.
T* is a compact operator, so there is a norm one projection P in LxiX),

which is a conditional expectation over a finite rj-algebra, such that

\\y-Py\\<e   for all y e T*(BX-).

That is, 117- - PT*\\ < e. Take S = (T* - PT*)* = T - TP*. Since T is
compact and weak*-weak continuous and P* is weak*-weak* continuous, we

have that S satisfies (b) and ||5|| < e . P* is the same conditional expectation

(taken in L°°{X)) and its range is a subspace Y of finite dimension m isometric

to I™ . Composing this isometry with T\y we get an operator R: I™ —> X such
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that \\R\\ < \\T\\. Since R(Bg) = T(BY) and P* has norm one, the equality
T = S + TP* implies that (a) is satisfied. This proves the claim.

Let us write T0 = T and apply the claim for e = e0 = ||T||/2; then we

obtain mx e N and operators

Rx: /£' -» X   and   S: L°°(X) -> X

satisfying (a), (b), and (c). Put Tx = S and apply again the claim to Tx  for

e = sx = sq2~x . An inductive procedure gives us a sequence (m„) of natural

numbers and two operator sequences Rn: I™» -* X, Tn: L°°(X) -* X satisfying

(i) ¡|A,,|t<ï|7;_i|ï, « = 1,2,...;
(ii) ||r„||<||r||2-«, « = o,i,...;
(iii) Tn(BL-) c Rn+X(B£) + Tn+x(BLoo), « = 0,1,....

From (i) and (ii) we obtain

oo

(2) £p„n<2imi.

And by (iii) and (ii) we have for every n

(3)        T{BLoo)c£Rk{B£) + Tn{BLoo)cJ2XkiB£) + \\T\\2-»Bx.
k=x fc=l

We can consider the sequence (/™") placed pairwise disjointly in en (take a

sequence (A„) of disjoint subsets of N with \A„\ = m„ and consider /™n as

the subspace generated by {e,: j e A„), where {e,: j e N} is the canonical

basis of Co). Let P„: Co -> 1™" be the natural projection and take U„ = RnP„.

By (2) we can define a compact operator U: Co —► X as U = Y!T=X Un • Since

the lg? are placed disjointly, for every n and every z in 2~Zit=i Rk(BSo) > there

exists y e BCQ such that Uy = z . Then by (3) we obtain

xgpcT(BLo.)cU(BCo).

Taking x„ = Ue„ the proposition follows.

2. Compact sets in ranges of measures of bounded variation

We devote this section to prove that every compact set of a given Banach

space X lies inside the range of an A-valued measure of bounded variation if

and only if X is finite dimensional. Since the "if part is obvious, it suffices to

prove the "only if part, which is Theorem 2.1. In the proof of this theorem it

is given (Lemma 2.2) a lower bound of the total variation of a measure valued

in a finite-dimensional Banach space and containing the unit ball in its range.

Theorem 2.1. Let X be a Banach space. If every compact subset of X lies

inside the ranse of an X-valued measure of bounded variation, then X is finite

dimensional.

Proof. First let us establish the following:

Claim. Under the hypothesis of the theorem, there exists a constant c > 0 such

that every finite subset of Bx lies inside the range of a measure p with total

variation tv(^) < c.
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If the claim were false, there would exist a sequence (F„ ) of finite subsets of

Bx such that for every n the condition Fn c xgp would imply tv(p) > n2.

Being the set K = (J^li j;F„ relatively compact (it is a null sequence); there is

a measure of bounded variation p with K c xgp. Thus Fn c xgnp and this

would yield tv(p) > n for every n, a contradiction with the fact that p has

bounded variation.

In order to finish the proof we need the following lemma.

Lemma 2.2. Let E be a finite-dimensional Banach space. If ô e (0, 1) and

p: {L, ÇI) —► E is a measure such that for every x e Se there exists A el. with

\\p(A)-x\\ <ô, then

tv{fi) > (l-ô)nx(IE.) > (1 - S)y/dim(E).

End of the proof of Theorem 2.1. Let X be an infinite-dimensional Banach

space, and let Y be a closed subspace of finite codimension n . We can take a

finite subset H of the open unit ball of E = X/Y such that dE(x, H) < \ for
every x e Se ■ If Q: X —» E is the quotient map, we can find a finite subset

J of Bx such that Q(J) = H. If p is an X-valued measure with J c xgp,
then Q°p is an ¿'-valued measure with H c rg(Q op). From Lemma 2.2 it

follows that tv(p) > tv(Qop) > \%/ri. As n was arbitrary, X cannot satisfy

the claim and the thoerem follows.

Proof of Lemma 2.2. The hypothesis of the lemma imply that for every x* e E*

we have

(4) suv{(x*,p(A)): Ael}>(l-Ô)\\x*\\.

Let / be the Radon-Nikodym derivative of p with respect to its variation

\p\. We know that ||/(çy)J| = 1   |/¿|-almost everywhere, so

(5) II** °/1k~{|,|)< 11*11    for all x* c £*.

By (4) we also have

(6) (1 - ô)\\x*\\ < sup | jy of)d\p\: A e zj < ||x* o f\\L,m.

Let F be the space F — {x* of: x* e E*}. Let us write F^, and Fx

when we consider in F the norms in L°°(\p\) and in Lx(\p\) respectively.

Inequalities (5) and (6) allow us to define two operators T: E* —► F^ and

S: Fx -* E* as Tx* = x* o / and S(x* o f) = x* for all x* e E*. We have

||T|| < 1 and ||5|| < (1 - ö)~x . Now we consider the identity map R from

Foo into Fx . We have /¿r. = S o R o T. From the easy part of the "Pietsch

Factorization Theorem" for 1-summing operators, we obtain nx(R) < tv(p)

and the first inequality follows from the ideal property of Hi . The second

inequality is classical: iix(Ie-) > k2(Ee.) = ^/dim(E) (see, for instance, [P,

Chapter 1]).

When we use Lemma 2.2 to prove the Theorem we apply it to the finite-

dimensional quotients of X. Since we allow the measures to be X-valued,

we cannot apply it to a finite-dimensional subspace E of X. Moreover, as

we show in the next example, there are measures of bounded variation whose

ranges contain the unit ball of infinite-dimensional subspaces. The key is that

there are quotient maps that are 1-summing, in contradiction to the fact that an
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embedding is 1-summing only if it has a finite rank, whose quantitative version

we have used.

Example 2.3. An /oo-valued measure of bounded variation whose range contains

the unit ball of an infinite-dimensional subspace.

Let Y be a subspace of /oo isometric to l2, and consider a quotient map

ß: h —► Y. Q is a bounded operator such that By c Q(B¡X ). Since Q is

an operator from an Lx-space into a Hubert space, it follows that Q is 1-

summing thanks to Grothendieck's Theorem [P, Theorem 5.12]. By Pietsch's

Factorization Theorem [P, Theorem 1.3] there exist a compact space K, a

Radon probability X on K, a closed subspace F of C(K), and continuous
_]_}{X)

operators R: lx -+ F and S: F       —> Y such that

11*11 ¿1,        \\S\\ = nx(Q),    and   Q = Soj\FoR,

where /': C(K) —► LX(X) is the natural inclusion. This implies BY C Soj\F(Bf).

Thanks to the "extension property" of /oo we can extend S to LX(X). That
— — _j 1 / î \

is, there exists 5: LX(X) -* /»= such that S\Fl = S, where Fx = F . The

composition T = So j provides us a 1-summing operator (j is 1-summing)

such that By C T(Bc(kx) ■ By Proposition 1.3 there is an /oo-valued measure

of bounded variation p such that By c xgp.

3. The spaces R(X) and Rc(X) . The main result

Since every norm compact subset of a Banach space is contained in the closed

convex hull of a norm null sequence [D, p. 3], it follows from Proposition 1.1

that the two following statements are equivalent:

(i) Every compact subset of X lies inside the range of an X-valued measure.

(ii) Every norm null sequence in X lies inside the range of an X-valued

measure.

In this section it is proved that X satisfies the statements (i), (ii) if and only

if X* is isomorphic to a subspace of an Lx space.

We denote by R(X) the vector space of all sequences (x„) in X so that

there exists an X-valued measure p satisfying

(7) {x„: n e N} c xgp.

If (x„) belongs to R(X), we put ||(x„)||r = inf||/i||, where the infimum is

taken over all vector measures p admissible in (7). Obviously, we have

(8) ||(**)||oo < tiv*„)||r    for all (*„)€*(*)

Thus statement (i) is equivalent to the next one: cn(X) is contained in R(X).

Proposition 3.1. (a) (R(X), || • ||r) is a Banach space.

(b) Co(X) is contained in R(X) if and only if there exists a constant c > 0

such that ||(x„)||r < clK*,,)!!«, for all sequences (x„) that contain only finitely

many nonzero terms.

Proof. We omit the straightforward verifications of statement (a) and make only

a remark on the completeness assertion. To this end, it suffices to prove that

any absolutely summable series in R(X) is convergent, and this follows easily

using Proposition 1.2.
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The statement (b) is an obvious consequence of inequality (8), the Open

Mapping Theorem, and the density in cn(X) of the sequences (x„) with only

finitely many nonzero terms.

Remark 3.2. From Proposition 3.1(b) it follows that Cn(X) is contained in

R(X) if and only if there exists a constant c > 0 such that the following is

true: for every finite subset H of Bx there is an X-valued measure p so that

H c xgp and \\p\\ < c.
The next lemma contains some properties of Banach spaces X satisfying the

condition c0(X) c R(X).

Lemma 3.3. (a) Co(Lco(X)) c R(L°°(X)) for every extended positive measure X.

(b) // Co(X) c R(X), then c0(Z) c R(Z) for every quotient Z of X.
(c) If c0(X**) c R(X**), then c0(X) c R(X).

Proof, (a) Let H c Bx be a finite set. Given e > 0, there exist a finite-

dimensional subspace Y of X and T: /£, .-»• Y so that H c Y, P*7J|| = 1,
and ||T|| < 1 + e . As H c T(B^), by Proposition 1.3 there exists a T-valued

measure p so that

He xgp   and   \\p\\ < 2(1 + e).

(b) Let Y be a closed subspace of X. By Remark 3.2, there is a constant

c > 0 such that every finite subset of Bx lies inside the range of an X-valued

measure p with \\p\\ <c. Given e > 0, if H = {xx, ... , x„} is a finite subset

of the closed unit ball of X/Y, we can choose x, e x, so that ||x,|| < 1 +e for
all i < n . Let p be an X-valued measure such that

{Xi}^=xcxgp   and   \\p\\ < (1 + e)c.

If <p: X —> X/y is the canonical surjection, /¿i = tp o p is an X/T-valued

measure for which we have

Hcxgpx    and   \\px\\ < (1 + e)c.

(c) Again by the above remark there exists a constant c > 0 so that every

finite subset H c 5*" bes inside the range of an X**-valued measure p for

which

H c xgp and ||//|| < c.

So, if {x,}"=1 is a finite subset of 5^ , there is an X**-valued measure p such

that {x,}"=1 c xgp and \\p\\ < c. Choose A¡ so that x, = p(A¡), and consider

the (X-field X0 generated by {Ax, ... , A„} on Q. Let /i be the restriction of

H to So ) a°d T be the finite-dimensional linear span of xgp; by the "principle

of Local Reflexivity" ([De] or [P, p. 6]), given e > 0, there exists a one-to-one

operator T: Y -> X with Tx = x for all x eXtlY, and ||T|| < l+e. Thus
/ii = T o p is an X-valued measure for which we have {x,}"=1 c xgpx and

\\Px\\ < (1 + s)c. The lemma follows from Remark 3.2.

Next we are going to consider sequences in X that lie inside the range of a

vector measure with relatively compact range. We denote by RC(X) the vector

space of all such sequences (x„) in X. By Proposition 1.4, if (x„) belongs

to RC(X), there exists an unconditionally convergent series Y,yk satisfying

xn e Y\-yk > ̂ A:] f°r all n . Recall that Y\~yk > )>k] is the range of a vector

measure p for which
(oo

£|<y,,x*)|: x'ei?*.}.
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If (x„) belongs to RC(X), we set

(9) \\(xn)\\rc = infsap(f^\{yk,x*)\: x* e Bx.\ ,
^ k=x '

the infimum being taken over all u.c. series ]TJ yk suchthat {x„} is contained

in Yli~yk > yk]- Obviously, we have

(10) ||(x„)||oo<||(x„)||r<2||(x„)||rc   fox all ixn) e RdX).

Proposition 3.4. (a) (RC(X), || • ||rc) ¿j a Banach space.

(b) Co(X) is contained in RciX) if and only if there is a constant c > 0 such

that \\{x„)\\rc < c||(x„)||oo for all sequences (x„) that contain only finitely many

nonzero terms.

(c) If (x*) is a sequence in X* for which the operator T: x e X -+ ((x, x*)) e

lx is l-summins, then the linear form tp defined by

tp: (x„) € RdX) -> ^(x„, x*)
n=X

is well defined and continuous.

Proof. Again the completeness of RC(X) is proved showing that any absolutely

summable series in RciX) is convergent. Then (a) and (b) follow easily as in

Proposition 3.1.

(c) Let (x„) be a sequence belonging to RC(X). Choose an u.c. series Yyk

so that

{xn: neN}c <Y,akyk- \<*k\< l\-
*• k=x >

Then we have

£iv*„,**)i< EEk^»**)i=Eii«^,*:))»Hi
«=1 n=\ k=X k=X

<7n(T)sup{X]|(y^x*)|: x*eBxX

Hence tp is well defined and continuous since

\(<p,(xn))\<nx(T)\\(xn))rc.

Remark 3.5. From Proposition 3.4(b) it follows that co(X) is contained in

RC(X) if and only if there exists a constant c > 0 such that the following is

true: for every finite subset H of Bx , there is a finite subset {yx, ... , yn} of

X so that

(11)    //c{¿a,y,: |a/|<l|    and    sup { ¿ \{y,, x*)|: x* e Bx.\ < c.
*■ í=i ' *• (=1 '

It can be proved that the linear form defined in Proposition 3.4(c) is also

continuous on R(X). Since we need only the continuity on RC(X), we do not

include the larger proof of this fact. Now we are ready for the main theorem.



BANACH SPACES 513

Theorem 3.6. Let X be a Banach space. Thefollowins Statements are equivalent:

(a) Every norm compact subset of X lies inside the ranse of an X-valued

measure.

(b) c0(X) c R(X).
(c) Co(X) c RC(X).

(d) Ylx(X, /,) = N(X, /,).
(e) X* is isomorphic to a subspace of an Lx space.

Proof. We already know that (a) and (b) are equivalent.

(b) => (c). By Remark 3.2, there is a constant c > 0 such that, for every finite

subset {xn , ... , xn} of Bx , there exists an X-valued measure p satisfying

{x,}?=1 crg/i   and    \\p\\ < c.

Choose Ai such that x, = p(A¡) and consider the cr-field 10 generated by

{Ax, ... , An} on Q. If Ex, ... , Em are the atoms of Iq , we put y¡ = p(Ej)

for j < m . Let us note that

{x,KL, c{f>,y,: K|<l|
L 7 = 1 J

and

supj¿|(>,,x*>|: x*eBx.}<\\p\\<c.

Hence (c) follows from Remark 3.5.

(c) =>• (d). From (10) and the Open Mapping Theorem it follows that there

is a constant c>0 so that

(12) ||(x„)|U<c||(x„)||oo   fox all (xn) e co(X).

If T: X —> lx is a 1-summing operator, then Tx = ((x, x*)) for a suitable

sequence (x*) in X*, and by Proposition 3.4(c), the linear form

oo

tp: (x„) e RdX) -» ¿(x„, x„*) e 1
n=X

is continuous. From (12) it follows that the restriction map of tp to cYj(X)

is also continuous; so tp belongs to /i(X*), the dual space of co(X). Then

5211*» II < +00 and this proves that T is nuclear.
(d) => (e). J. Lindenstrauss and A. Pelczynski [LP] proved that a Banach

space X is isomorphic to a subspace of an Lx space if and only if there exists

a constant c > 0 such that the following is true: If H and G axe finite subsets

of X so that

£|(x,x*)|<£|(y,x*)|    forallx*eX*,

xeH y€G

then Ex6tfll*ll<^EyeGIMI-
We also recall that the Banach spaces A/(X, lx) and /i(X*) are isometric [J,

1.15]. Assume that (d) holds; then there exists a constant c > 0 such that

(13) n(T)<c7Ti(T)   for all Te N(X, lx).
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If {**}"= 1 and {y*j)y=x are finite subsets of X* so that

n m

(14) EK**,***)!^^*,***)!    for all x** e X**,
i=l j=x

we can define two linear operators T and S from X into lx by

« m

Tx = ^2(x, x*)e¡   and   Sx = ^ (x, y * )e}
i=X j = X

for all x € X, where {ey. / e N} is the unit basis of lx . From (14) it follows

that 7Ti(T) < nx(S). This and (13) yields

n(T) < cnx(T) < cnx(S) < cn(S) ;

but n(T) = J2l=x 11**11 and n(S) = £?, ||y*||, so the implication follows by
the Lindenstrauss-Pelczynski characterization.

(e) => (b). If X* is isomorphic to a subspace of an Lx space, then X** is

isomorphic to a quotient of an L°° space. Lemma 3.3 assures us that Co(X) c

R(X).

Remark 3.7. In order to prove Theorem 3.6 we introduced the space R(X).

We could have done the same for proving Theorem 2.1 introducing the analo-

gous space Rbv (X) of sequences in X lying in ranges of measures of bounded

variation. In this case we would see that every unconditionally convergent se-

ries Yxn iu X* defines (as in Proposition 3.4(c)) a continuous linear form

in R/,V(X) ; so dualizing the condition Co(X) c R¡,V(X) we would obtain that

every unconditionally convergent series in X* is absolutely convergent and, by

Dvorestky-Rogers Theorem, X* is finite dimensional.

Conversley, the implication (a) =>• (e) of Theorem 3.6 could be proved using

the methods intorduced in §2; we would prove, via an analogous claim to that in

Theorem 2.1, that every finite-dimensional quotient of X is C-isomorphic to

a quotient of L°° (C is an absolute constant). Then, every finite-dimensional

subspace of X* is C-isomorphic to a subspace of Lx, implying (see [LP]) that

X* can be embedded isomorphically in an Lx space.

In Theorem 3.6 we proved that for a Banach space the statements "every null

sequence lies inside the range of a measure" and "every null sequence lies in a

countable sum of segments" are equivalent. The next example shows that this

equivalence is not true for isolated null sequences and proves, by Proposition

1.4, that not every compact subset of the range of a measure is a subset of a

compact range.

Example 3.8. There exists a null sequence in L'[0, 1] that lies in the range of

a measure but not in any countable sum of segments.

Proof. We know that the unit ball of L2 is the range of an L2-valued measure

(see [AD] or [R]), so it is also the range of an Lx-valued measure. For n e N

and I < k < n let fnk be

fn.k = VñXitzl   ii-
1    n     ' nJ

Since ||/„;*]|£2 = 1 and ||/„,fc||z.. = 1/y7«, the sequence (f„,k)n€ti,i<k<n isa

null sequence in Lx , which is contained in the range of an Lx-valued measure.
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We are going to prove that this sequence is not contained in any countable sum

of segments; in order to do this we need the following lemma.

Lemma 3.9. Let J2xn  be an unconditionally conversent series in Lx.   Then

there exists a compact operator T: l2-+ Lx such that

oo

Y/[-Xn,X„]CT(Bh).
n=X

Before proving the lemma we continue the proof of the example. By the

lemma it is enough to prove that if T: l2 —> Lx is an operator such that fnk e

T(B¡2) for n e N and k = 1, ... , n , then T is not compact; this is done by

using volume arguments.

If T were compact, there would be a natural number N such that T(B¡2)

could be covered by N balls of radius \ . If Yn is the subspace of Lx generated

hy (fn,k)k=x > it is easy to see that there is a norm one projection P„: Lx —> Yn .

So PnT(B¡2) could be covered by N balls of radius \ centered in points of Yn .

There is an isometry from Yn onto /" that maps each fnk to ek/\/ñ ((ek)k=x
is the natural basis of /"). So, we can suppose that we are in W and we can

use the «-dimensional volume vol„ (the Lebesgue measure in W) to estimate

N below. Taking quotient over the kernel of P„ T, we obtain an «-dimensional

Hubert space and thus PnTiBh) = S(B%) for a certain operator S: I" -> I" ■ If

S(B^) can be covered by N translates of \B*{, we have

(i5) yoinismï) < ̂ voin Q^r) = ^vow).

The following estimates are easy to prove

volniB1) = -^    and    vol„(ß2") > ~.
i' V«!

Regarding S as a n x n-matrix, we get from these estimates and (15)

„«,       wa2.voi(^;))^1de,^oi(B;)     ,      et
vol„(ßf) vol„(ßf)

Since ek e SiyfñB!}), it follows that HS-1^^ < ^ fox k = I, ... , n.

Thus the Hilbert-Schmidt norm of 51- '  is

\\S-l\\HS=(j2WS~ie^)        ̂ "-

This implies

(detS-1)2 = delays-1) < (ItraS-ys-1))" = (¿||S-l||^>" < n".

Using that enn\ > n" , this last estimate and (16), we obtain

N > 2"v/«!|detS,| > 2nJñ\-4= > (-Í I  .
v^     \\fê)

This leads to a contradiction, since the last inequality should be true for every

n .
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Proof of Lemma 3.9. We know that there is a compact operator S: c0 —► Lx

such that

00 _,1

(17) £[-x„,x„] = S(2?Co)   .

«=1

We are going to prove that 5 factors compactly through l2. For every subset

A C N let Pa be the natural projection of Co (/2) onto /¿, (/j1), the subspace
generated by {e¡: j e A} , and let iA denote the natural inclusions. Since S is

compact, we can produce a disjoint sequence (A„) of finite subset of N such

that
OO

\jAn = N   and   \\SiAn\\<4-"\\S\\   for « = 0, 1,....
1

Being /¿," a C(K) space and L1 a cotype 2 space, there exists an absolute

constant c such thaet n2(SiAn) < c\\SiAn\\ < c4_"||5'|| [P, Theorem 5.14]. This

implies a factorization through /^" ; that is, there exist an: l£¡ —» l^" and

ß„: ¡2" -* L1 such that S/¿„ = ßnan and ||a„|| ||jS„|| < c4-"||S||. One can

arrange it in such a way that ||a„|| < 2~n and \\ßn\\ < c| 15"!|2—" . We can now

defined two compact operators a: c0 —> l2 and T: l2-+ Lx as

00 00

01 = ¿2 ¿¿n anpA„    and   T = ]T ßnPAn.

n=l n=X

It is easy to see that S = Ta, and since ||a|| < 1 we have

S(BC0) = T o a(BC0) c T(Bl2) = T(Bl2).

The lemma follows by (17).

Remark. The sequence given in Example 3.8 also works in Lp[0, 1], 1 < p < 2.

It is not possible to construct an example like this in every Banach space failing

Theorem 3.6; since, for instance, every measure valued in lp , 1 < p < 2, has

relatively compact range.
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