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GENERALIZED CONVEX FUNCTIONS
AND BEST Lp APPROXIMATION

RONALD M. MATHSEN AND VASANT A. UBHAYA

(Communicated by Andrew M. Bruckner)

Abstract. Some properties of generalized convex functions significant to ap-

proximation theory are obtained. The existence of a best Lp approximation

(1 < P < °°) from subsets of these functions is established under certain con-

ditions. Special cases of these functions include «-convex functions which are

much investigated in the literature.

1. Introduction

Let I - (a, b) with -oo < a < b < oo, and C = C(I) be the space of real

continuous functions on /. A family G of functions in C is said to be an

«-parameter family (n > 2) if for any n points xj, I < i < n, in I with

a = xo < xx < x2 < ■ ■ ■ < x„ < xn+x = b and real numbers yx,y2,... , yn,

there exists a unique function g G G satisfying g(x¡) = y,■■, I < i < n . A real

function k on / is defined to be G-convex (or generalized convex with respect

to G ) if whenever xx < x2 < ■ ■ ■ < x„ are points in / and g £ G satisfies

g(Xi) = k(Xj), 1 < i < n , then

(1.1) (-l)n+i-1(k(s)-g(s))>0,        s£(Xi-X,Xi), 2<i<n.

The unique g satisfying g{x¡) = kix¡) is said to interpolate k at {x,}. We
let K denote the set of all G-convex functions on /. Clearly, G c K. In

general, K is not convex. If G is convex so is K, as may be easily verified. It

is easy to show that K c C ; a simple proof appears in [12], although this result
was first proved in [14]. For completeness we present the following equivalent

definition of G-convexity which is a part of the folklore: a real function k is

G-convex if (1.1) holds for some fixed i where I < i < n, and points {x¡}

and g are as in the above definition. For example, [9] (resp. [4]) requires that

(1.1) hold with i = n (resp. all I < i < n + I). See [13] for a discussion of
this point. We say that G is a linear family or a Tchebycheff system, if G is

an «-parameter family which is a vector space of dimension n . The results of
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this article, in their full generality, are applicable to G-convex functions even
when G is a nonlinear family.

Various concepts of generalized convexity have evolved over several decades

in the literature. See, e.g., [16] and other references given there; for generalized

convexity induced by ECT-systems see [8, 10]. The above definitions for n = 2

appeared in [1,2] and, for an arbitrary n , in [4, 9, 21] following the lead of [15].

It was further extended in [12, 13]. If G is the set of algebraic polynomials

of degree at most n - 1, then functions in K are called «-convex. See, e.g.,

[3] and references in [16]. Note that 1-convex (resp. 2-convex) functions are

monotone nondecreasing (resp. convex) on /. Much effort has been expended

in the past to investigate the properties of generalized convex functions and, in

particular, «-convex functions, but not mainly from the point of view of ap-

proximation theory. However, recently there has been considerable interest in

approximation by «-convex functions [6, 20, 23-25] for « > 2, by generalized

convex functions induced by ECT-systems [26], and the special case of mono-

tone functions [5, 18, 19]. In this article, we investigate several properties of

generalized convex function significant in approximation theory (§2). We then

apply them to establish the existence of a best Lp-approximation (1 < p < oo)

by nonconvex subsets of such functions and derive properties of Lp -convergent
sequences (§3).

The above definition of generalized convexity allows for many classes of func-

tions other than the «-convex functions. Examples for « = 2 appear in [1].

For an arbitrary « , let a = (c*o, ax, ... , aH-i) € Rn denote a parameter, and

G consist of functions of the form (i) gais) = Y^lfo a's' + ^s" + Bsn+X, where

A and B are fixed constants, or (ii) gais) = Yf"fo a¡ exp(-(p, - s)2), where

Pi, 0 < i < « - 1, are fixed distinct numbers. Then, in each case, G is a linear

family, (In (ii) above, the unique interpolation property follows as in [8, Ex-

ample 5, p. 11].) Other examples are given in §2. Now let G be a linear family

spanned by a basis e¡, 0 < i < n - 1, in C, and t be a strictly increasing
continuous function whose domain and range are the entire real line R. Define

fia (s) = T:(T,lfol aie') ' a £ R" , and F = {fa : a £ Rn} . It is easy to see that

F is a nonlinear family when x is not the identity function; for example, if

x(t) = t3 or x(t) = log(l + r), t> 0, and x(t) = -x(-t), t < 0.

2. Properties of G-convex functions

A point x £ I is said to be a local maximum (resp. minimum) of / G C

if there exists an e > 0 such that fix) > fis) (resp. f(x) < f(s)) for all
s€(x-e,x + e)r\I. A local maximum or minimum is referred to as a local

extremum. A function / in C is said to have r alternating local extrema

if there exist points xx < x2 < ■ ■ < xr in I such that exactly one of the
following condition holds, (i) Points x¡ with odd (resp. even) indices are

local maxima (resp. minima) with (-l)'/(x,_i) > (-l)'f(Xi) for 2 < i < r.

(ii) Points Xi with odd (resp. even) indices are local minima (resp. maxima)

with (-l)'/(x,-_i) < (-l)'/(x;) for 2 < i < r. A constant function has zero

alternating local extrema. If / has exactly r alternating local extrema, then the

set E of all local extrema of / has r connected components in / where each

component is a closed interval on which the function is constant. However,

if E has r connected components, it does not necessarily follow that / has
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r alternating local extrema. For example, consider a nondecreasing function

which is constant on disjoint subintervals of /.

Theorem 2.1. In the following (a) implies (b) which implies (c).

(a) Every g in G has at most n-2 alternating local extrema in I.

(b) Every k in K has at most « - 1 alternating local extrema in I. If k

in K has exactly n - 1 alternating local extrema xx < x2 < ■ ■ ■ < xn-X

in I, then xn-X is a local minimum, k is nondecreasing on (xn-X, b),

and (-l)n~xk is nondecreasing on (a,xx).

(c) The total variation V(k, J) of every k £ K is bounded on a compact

interval J c I with V(k, J) < 2« max{|/c(s)| : s £ J} .

Proof. We show (a) implies (b). Suppose (a) holds and k £ K. Assume

that k has r alternating local extrema x¡ in / with xx < x2 < •■■ < xr,

where r > «. We reach a contradiction as shown below. Assume first that

xr is a local maximum. Set z„_, = xr-¡+i, 1 </'<«- 1. Now choose

z„_i < z„ < b with k(z„) < k(zn-i). Since z„_i = xr is a local maximum,

this is possible. Now let g £ G so that g(z¡) = k(z¡), 1 < i < n, and apply

(1.1) with {z, : 1 < i < «}. We conclude that g(s) > k(s) for 5 g (zn-i , z„)

and g(s) < k(s) for s G (z„_2, z„_i). Since g(z„) = k(z„) and g(z„_0 =

fc(zB_i), there exists a local maximum i„_j of g with t„-X £ [z„_i, z„).

(z„_i, z„). Similarly, there exists a local minimum tn-2 of g with tn-2 £

[z„_2, z„_i). Now git„-2) < fc(z„_2) < fe(z„_i) < g(t„-i). Applying this
procedure to each interval [z,_[, z¡], i > 2, we obtain r,_i g [z,_i , z,) with

c?(/B-i) > g(tn-2) < g(tn-f) •■ ■ Hence, t,■■, 1 < i < n-1, are «-1 alternating

local extrema of g which is a contradiction. Now suppose that xr is a local

minimum. Then set z„_, = xr_,, 1 < i < n — 1. Now z„_i = xr_i is a local

maximum. Hence a contradiction is reached by arguments as above. Now let

x¡, 1 < i < n - 1, be as in the second statement of (b), where xn-X is a local

maximum. Then exactly as above, by letting z¿ = x¡, 1 < i < n - 1, we reach

a contradiction. Hence, x„-X is a local minimum. The monotonicity of k

on (x„_i, b) and (a,xx) follows because without it there would be additional

extrema of k. To show that (b) implies (c), we observe that if k has r

alternating local extrema x¡ in /, then k is monotone on each subinterval

(jc,_i , x¡), I < i < r + I, where Xo = a and xr+x = b. Since r < « - 1, the

result follows. The proof is complete.

The next result will be established using Tornheim's convergence theorem

[21, Theorem 5].

Proposition 2.2. Let K' c K be a nonempty set of functions which are pointwise

bounded on a dense subset I' of I. Let xx < x2 < ■ ■ ■ < xn be n points in I'.

Then
G' = {g£G: gixi) = kixi),  1 < i < n, k £ K'},

is pointwise bounded on I.

Proof. If for some t in I, {git) : g £ G'} is not bounded above, then there

exists a sequence g¡ g G' such that g jit) —> oo. If k¡ £ K1 with gjixi) =

kjixi), 1 < i < « , then, by hypothesis, the set of real numbers A¡ = {kjixi) :

j > 1} is bounded for each i. Hence, t ^ x¡ for any /. Since At is bounded,

there exists a subsequence of gj which converges at each x¡.   Assume, for
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convenience, that gjix¡) —► y, for each /' where the y¡ are real. Let g in K

satisfy gixi) = y i. Then by [21, Theorem 5], g¡ —> g pointwise on /. Hence,
git) — oo, which is a contradiction since g is real valued. Thus {git) : g £ G'}

is bounded above. Similarly, it is bounded below. The proof is complete.

A subset F of C is called equi-Lipschitzian on a compact interval J c I

if \fis) - fit)] < c\s - t\ holds for all / in F, all s, t in /, and some c > 0
possibly depending upon J.

Theorem 2.3. Let J c I be a compact interval and V be a dense subset of I.

The following conditions are equivalent.

(a) Every subset G'  of G, which is pointwise bounded on V, is equi-
Lipschitzian on J.

(b) Every subset K'  of K, which is pointwise bounded on V, is equi-
Lipschitzian on J.

Proof. Since G c K, (b) implies (a). To show (a) implies (b), let K' be
as in (b), J = [c, d], and c < s < t < d. Choose points x¡ in /' with

xx < x2 < ■ ■ ■ < x„_i < s < xn < t. Define G' as in Proposition 2.2. Then, by

that proposition, G' is pointwise bounded on / and, hence, equi-Lipschitzian

on J. Suppose k £ K', and g £ G' with gix¡) - kix¡), 1 < i < n . Then we
must have kit) > git) and kis) < gis). Hence kis) - kit) < gis) - git) <

c\s - t\ for some c > 0 by the equi-Lipschitzian condition on G'. Again,

choosing points x¡ in /' with xx < x2 < ■■■ < xn_2 < s < xn-X < t < x„ , we

may show as above that kit) - kis) < c\s - t\. The proof is complete.

The proofs of the following theorems are identical to [17, Theorems 10.8 and
10.9].

Theorem 2.4. Suppose that Theorems 2.3(a) holds for some compact interval

J c I. Let ikj) be a sequence in K which converges pointwise on a dense

subset of I. The limit then exists for every s in I and the function k given by

kis) = limit kjis) as j —> oo and s in I is in K. Moreover, ikj) converges to

k uniformly on J .

Theorem 2.5. Suppose that Theorem 2.3(a) holds for some compact interval
J c I. Let ikj) be a sequence in K which is pointwise bounded on I or a
dense subset of I. Then there exists a subsequence of ikj) which converges

pointwise on I to some function in K, and it does so uniformly on J.

The following are some examples to which Theorem 2.1 (a) and Theorem

2.3(a) apply. Let / = (0, 1) and a £ Rn be a parameter as in §1. Let

G, in the respective examples, consist of functions of the form (i) gais) =

"o + Eí'Ji1 ais' ', (Ü) ga(s) = ao + E"Ji' oti(pi+s)~x, where p, are fixed distinct

numbers in /; and (iii) ga(s) — a-o + Y^1fx aiexP(P¡s), where p; are as in

(ii). The fact that in each case G has the unique interpolating property and

Theorem 2.1 (a) applies may be shown by arguments as in [8, Examples, p.

9]. It is easy to see that Theorem 2.3 (a) holds for the cited linear families

G of differentiable functions and every compact J c I. Indeed, in this case,

G' is uniformly bounded on any fixed n points in /, and « interpolating

values uniquely determine the parameter a of a g £ G'. It follows that these

parameters are bounded for g £ G', and, hence, the derivative of g £ G' is
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also bounded on J. Consequently, Theorem 2.3(a) holds. As was observed in

§ 1, K in example (i) above is the well-known «-convex functions. The equi-

Lipschitzian property of Theorem 2.3 (b) then applies to K on every compact

J c I. For convex functions this result and the conclusions of Theorems 2.4
and 2.5 are established in [17], and for «-convex functions in [25]. Several

results on the number and properties of components of the set of local extrema
of «-convex functions are mentioned in [15, §1.4]. Now let x be a strictly

increasing nonidentity function as in § 1 but also differentiable with its derivative

x' > 0 on R . Then F = {xiga) : a £ R"} , where ga , is as in any of the above

examples, is an «-parameter nonlinear family which satisfies Theorems 2.1 (a)

and 2.3 (a).

3. Applications to Lp -approximation

Let H be the set of all extended real functions on /. Let Lp , 1 < p < oo,

denote the Banach space of all (equivalence classes of) Lebesgue measurable

functions f in H with / |/|" < oo and the norm \\f\\p = (/ \f\p)xlp . Similarly,

let Loo be the Banach space of (equivalence classes of) essentially bounded

functions / with norm H/Hoo = esssup|/|. Let P c K be any nonempty set.

Given f £ Lp, define A = inf{||/ - k\\p : k £ P n Lp}. The approximation
problem is to find h £ Pf\Lp so that A = ||/-«||p ; such an h is called a best
approximation to / from K_ in the given norm.

Givn P c H, we define P to be the set of all functions f in H such that

fj—>f pointwise on / for some sequence iff) in P. Such sets are useful in

approximation [24]. Later we shall apply the results of [24]. The definition of

P given here is weaker than the one in [24]; however, it will be seen that all

the results of [24] hold with this change. Note that if P c K, then P is not
necessarily a subset of K since the functions in P may take the values ±oo .

Proposition 3.1. Let {kj) be a sequence in K which converges pointwise to an

extended real valued function k on I. Suppose xx < x2 < •■■ < xn+x are points

in I at which k is finite. Then k is finite on [xx,xn+x].

Proof. Let g¡ £ G interpolate kj at x,, 2 < i < « + 1, and let h¡ £ G
interpolate kj at x,, 1 < i < n. Let g and h, respectively, interpolate k at

x¡, 2 < i < n + 1, and x¡■, 1 < i < n. Then by [21, Theorem 5], g¡ -* g
and hj -> h pointwise on /. Since (1.1) holds for kj and gj, in the limit it

must hold for k and g. We therefore obtain (-l)"+'(/c(s) - gis)) > 0 for s £

ix¡-X, Xj), 3 < i < n+l, and (-l)"(k(s))-g(s) >0 for s £ (a, x2). Similarly,

considering kj and hj we obtain (-l)n+i~x(k(s)-h(s)) > 0 for s £ (x¡-\, x¡),
1 < i < n , and k{s) - his) > 0 for s £ (jcb , b). We therefore conclude that
i-l)"+igis) < i-l)n+ik{s) < i-l)n+ihis) for s £ (jc,_i , xt), 3 < i < n. Also,

gis) > kis) > his) for s £ ixn, xn+x), and i-l)ngis) < (-l)U(i) < (-1)"A(j)

for s £ {x\, x2). It follows that k is finite on [xx,xn+x]. The proof is

complete.

Proposition 3.2.  K n Lp = K n Lp for 1 < p < oo.

Proof. Let k £ K n Lp. Then there exists a sequence ikj) in K such that
kj —> k pointwise on /. Let c, d £ I with c < d. Since k £ Lp, the set

{s £ I : \kis)\ = oo} has Lebesque measure zero. Hence, we can find points

xx < x2 < ■■• < xn+x  in / with xx < c < d < xn+x  such that [&(Jt/)| < oo,
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1 < i < n + 1. By Proposition 3.1, k is finite on [c, d] and hence on / since

c and d are arbitrary. Since each kj is in K so is k. Hence, k £ KnLp and

the proof is complete.

Theorem 3.3. Suppose that Theorem 2.1 (a) holds. Let 1 < p < oo and P c K

be nonempty satisfying P n Lp = P n Lp .

(i) Let ikj) be a sequence of functions in P C\LP such that \\kj\\p < D for

all j and some D > 0. Then there exists a subsequence («7) of ikj)

and h in Pr\Lp such that hj —> h pointwise on I and \\h\\p <D. In
particular, the above holds for P = K.

(ii) P n Lp is closed in Lp, and a best approximation to fi in Lp from

P nLp exists if P n Lp is nonempty. In particular, the above holds for
P = K.

Proof. Since (a) of Theorem 2.1 implies (b), if k € K, then k has r <
n - 1 alternating local extrema xx < x2 < ■ ■• < xr in I. Consequently,

k is monotone (nondecreasing or nonincreasing) on each interval (x/_i ,x¡),

1 < i < r + 1, where Xq = a and xr+x = b . Hence, conditions (1) and (2) of

[24, p. 224] hold. The required conclusions (i) and (ii) for PnLp then follow

from [24, Theorems 2.1 and 2.2]. Since, by Proposition 3.1, P n Lp = P n Lp
holds when P - K, the required conclusions also hold for K C\LP . The proof

is complete.

The special case of the above theorem as applied to «-convex functions ap-

pears in [24, p. 235]. The existence of a best Li-(resp. L^ ) approximation by

«-convex functions is also established in [6] (resp. [25]) by different methods.

For the problem of Loo-approximation by convex functions, [23] characterizes

the maximal best approximation to / as the shift of the greatest convex mino-

rant of /, and develops efficient algorithm for its computation. The existence
of a best Lp-approximation, 1 < p < oo, to / in Ci[a, b]) from G and

certain uniqueness results are established in [21, 22].

Lemma 3.4. Suppose that Theorem 2.1(a) holds. Let 1 < p < oo and K' c

KnLp be nonempty such that \\k\\p < D for all k e K' and some D > 0. Then
K' is pointwise bounded on I.

Proof. Suppose K' is not bounded above for some t £ I. Then there exists

a subsequence (fc/) in K' such that kj(t) —► oo. By Theorem 3.3 (i) with
P = K, there exists a subsequence (/z,) of ikj) and h £ K n Lp such that

hj —> h pointwise on /. It follows that «(i) = oo, which is a contradiction

since h is real valued. Similarly, K' is bounded below. The proof is complete.

Theorem 3.5. Let J c I be a compact interval. Suppose that Theorem 2.1(a)
and Theorem 2.3(a) hold. Let 1 < p < oo, k £ C, and ikj) be a sequence in

K C\Lp . If \\kj — k\\p —> 0, then kj —> k uniformly on J.

Proof. There exists D > 0 such that \\kj\\p < D for all j. Hence, by Lemma
3.4, K' = {kj} is pointwise bounded on /. Theorem 2.3(b) then applies to

give \kjis) - kjit)\ < c\s - t\ for all j, for all s, t £ J, and some c > 0. We
first show that kj —> k on J. Suppose s £ J, e > 0, and 8 = e/(2c). By the
continuity of k at s, there exists 0 < ô < 8 such that if J' = Jnis-ô, s+ô),

then |fc(s) - kit)\ < e/2 for all t £ J'. Hence, \kjit) - kit)\ > \kjis) - kis)\ - e
for all t £ J', for all j.   If x denotes the indicator function of /', then
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\\kj - k\\pikj - k)x\\p > max{|rc,-(i) - k(s}\ - e, 0}p(/')1/i' ■ Letting ; -> oo, we

conclude that kjis) -> kis) on J. It follows that |/c(s) - kit)\ < c\s -1\ for all
s, t £ J. The result now follows by Theorem 2.4. The proof is complete.

The special case of the above theorem as applied to «-convex functions is

established by different methods in [11].
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