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Abstract. It is well known that the normed space of Pettis integrable func-

tions from a finite measure space to a Banach space is not complete in general.

Here we prove that this space is always barrelled; this tells us that we may ap-

ply two important results to this space, namely, the Banach-Steinhaus uniform

boundedness principle and the closed graph theorem. The proof is based on a

theorem stating that a quasi-barrelled space having a convenient Boolean alge-

bra of projections is barrelled. We also use this theorem to give similar results

for the spaces of Bochner integrable functions.

1. Barrelledness of spaces

with Boolean algebras of projections

This paper deals with some conditions, related to Boolean algebras of projec-

tions modelled over a finite measure space, under which quasi-barrelled spaces

are indeed barrelled. Barrelled spaces were introduced as the "good" class of

locally convex spaces, as domain spaces for operators, for which uniform bound-

edness principles and closed graph theorems hold (see [6, §39.5(1), §34.6(9)] or

[10, 4.1.3, 4.1.10, 7.1.12]). Although we refer the reader to the monographs
[2, 6, 10] for the terms used in this paper, we want to recall briefly the most
relevant definitions.

Let F be a locally convex space with dual E'. Denote, respectively, by

ct(F/ , E) and /?(F', E) the corresponding weak and strong topologies of the

duality on E'. A subset F of F is said to be a barrel if it is absolutely con-

vex, closed, and absorbent. If a barrel T absorbs every bounded subset of

E then it is called bornivorous. Barrels are the polars of ß(E', F)-bounded

subsets of E'. A locally convex space E is said to be barrelled (resp. quasi-

barrelled) if every barrel (resp. bornivorous barrel) is a zero-neighborhood.

Equivalently, E is barrelled (resp. quasi-barrelled) if and only if every subset of

E' that is o(E', F)-bounded, i.e., pointwise bounded on E (resp. ß(E',E)-

bounded, i.e., uniformly bounded on the bounded subsets of E ) is equicon-

tinuous. Metrizable locally convex spaces are quasi-barrelled and Banach (and
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Fréchet) spaces are barrelled; on the other hand, there are normed spaces that

are not barrelled [10, 4.1.8].
In what follows, (fi, X, p) stands for a measure space, where p is a finite,

positive, countably additive measure defined on a a-algebra X of subsets of

fi.
We are going to use a variant, stated in the next definition, of the concept of

Boolean algebra of projections introduced by W. G. Bade (see [13] for a good

list of references about this topic).

Definition. We say that a locally convex space E admits an (fi, X, p)-Boolean

algebra of projections if there exists a set {Pa : A £ X} of linear projections in

E such that:

(1) Pçi is the identity on E, PAnB = Pa- Pb for all A, B e X, and PAub =
PA + PB for all disjoint A, B £ X.

(2) PA is continuous for every A £ X.

(3) For every x £ E, the vector measure Fx : X —> E defined by FxiA) :=

PaÍx) is p-continuous, meaning limß(A)->o Pa(x) = 0. (Note that this condition

implies that Fx is countably additive [2, 1.2.4] and, in particular, bounded.)

The standard examples of Boolean algebras of projections arise in the cases

when F is a space of measurable functions (or classes of functions) defined

on fi and the projections are defined by Pa(x) := Xa • x, where xa is the

characteristic function of A e X. In these examples, conditions (l)-(3) are
usually easy to verify or well known.

Our main result, Theorem 1 below, will be applied only to metrizable spaces

in the next sections of this paper. However, we think that it is of independent

interest and may be applied to more general situations; hence, we state and

prove Theorem 1 for quasi-barrelled spaces.
We begin by recalling a useful fact about barrels that will be used in the

sequel (see [10, 3.1.3]).

Fact. Let E be a locally convex space with dual E'. If a barrel T in E absorbs

all null sequences in E then T is bornivorous. Dually, if M is a a(E', E)-

bounded subset of E' and M is uniformly bounded on every null sequence in

E, then M is ß(E', Efbounded.

Lemma 1. Let E be a quasi-barrelled locally convex space admitting an

(fi, X, p)-Boolean algebra of projections {PA : A £ X} ; then {PA : A £ X}
is equicontinuous.

Proof. Let U be an absolutely convex and closed zero-neighborhood in E.

Consider the set T := {x £ E : Pa(x) £ U for every A £ X} . It is clear that T
is absolutely convex and closed. T is also absorbent because for every x £ E

the range of the vector measure Fx is bounded in E. Hence F is a barrel.

Now, let ix„) be a null sequence in E. Since every Pa is continuous, we have

lim FXn iA) = lim PA(x„) = 0   for all A € S.
n n

This implies that {FXniA) : n = 1, 2, ...} is bounded for every A £ X, so that

we may apply the Nikodym Boundedness Theorem [2, 1.3.1] to deduce that

{Pa : A e X} is uniformly bounded on (x„) and, therefore, that T absorbs
ix„). The fact quoted above tells us that F is a bornivorous barrel so that, since
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E is quasi-barrelled, F is a zero-neighborhood. This proves the equicontinuity

of {PA : A € 2}.   Q.E.D.

Theorem 1. Let E be a quasi-barrelled locally convex space admitting an

(fi, X, p)-Boolean algebra of projections {Pa : A £ X} such that the follow-

ing condition is satisfied:

(4) Whenever iA„) is a disjoint sequence in X and (x„) ¿s a null sequence
in E such that

Pak(xn) = xn ,        « = 1,2,...,

then there exists x £ E and a sequence n(l) < n(2) < ■ ■ ■  in N such that

pAn(k)ix) = x„(k),        k = 1,2, ... .

iEquivalently, there exists a sequence «(1) < «(2) < • • ■  in N such that J2xn(k)

converges.)

If (fi, X, p) is atomless, then E is barrelled.

Proof. According to the Fact above, we have to prove that if M c E' is

o(E', F)-bounded and (xm) is a null sequence in E, then

sup{|(«, xm)\ : m £ N, u £ M} < +oo.

Suppose, on the contrary, that this supremum is +oo . We start by making a

sliding-hump type inductive construction.

Step 1. Call fio := fi ; on account of our assumption we have

sup{|(w, Fri0(.xm))| : m £ N, u £ M} = -f-co, (*)

and, therefore, we can find ux e M and m(l)eN such that

7\ ■=\{ui,PoúixmW))\> 1.

Applying condition (3) to xm(X), there exists ô > 0 such that whenever p(C) <

Ô,

\(ux, Pc(xm{x)))\ <7i- 1.

Since the measure space is atomless, fio can be written as a finite union of

measurable sets of measure at most ô . By (*), on one of these sets, say fii,

the corresponding supremum must be infinite; hence

sup{|(M, PafXm))] : m > m(l), u £ M} - +oo. (**)

Set Ax := fio\fii ; then, because p(fii) < ô, we have

\(ux, PAl(xm{X)))\ = |(»i, Fc^x^i,)) - (wi, Fn,(xm(,)))|

> |("1 . Aio(*m(l))}| - l("l , flalv*m(l))>l

>?1 -i?\ -1) = L

Step 2. We start from (**) finding u2 £ M and w(2) > w(l) such that

\(u2, Pai(xm{2)))\ >2.

Proceeding as in Step 1, we can find a set fi2 C fii such that

sup{|(w, Pa2(xm))\ : m > m(2), u e M} = +oo

and |(«2, PA2(xm{2)))\ > 2, where A2 := fi,\fi2 .
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In this way, we are able to find a sequence (m„) in M, a disjoint sequence

iA„) in X, and a subsequence (xm(nA of (x„) suchthat

\(un, PAn(Xm(n)))\ > n, «=1,2,....

Since xm(n) -* 0 and, by the lemma above , {PA : A £ X} is equicontinuous,

we have limn PAn(xm(nA — 0 so that we may apply condition (4): there exists

y £ E and a subsequence «(1) < «(2) < • • •  such that

PAnW(y) = PAnW(xm{n{k))),        k= 1,2, ... .

For the sake of simplicity, let us write vk :— u„(k) and Bk := An^ ; then

\(vk,PBk(y))\>n(k)>k,        k=l,2,....

Since M is o(E', F)-bounded, the scalar measures

mk: A ^ mk(A) := (vk,PA(y)),        k= 1,2,...

form a setwise bounded set, i.e.,

supijmfc^)! : k = 1, 2, ...}.< +oo    for all A £ X.

Therefore, we may apply the Nikodym Boundedness Theorem [2, 1.3.1] to de-

duce that
sup{|wfc(^)| :A£Z,k=l,2,...}< +00,

in contradiction with the fact that

\mk(Bk)\ = \(vk,PBk(y))\>k,        k=l,2,....   Q.E.D.

Corollary. Let E be a metrizable locally convex space admitting an (fi, X, p)-

Boolean algebra of projections {Pa : A £ X} and satisfying condition (4) of

Theorem 1. If F is a closed subspace of E such that Pa(F) c F for all A e X

and (fi, X, p) is atomless, then F is barrelled.

Remark. A locally convex space E is said to have property (K) if every null

sequence (x„) in E has a subsequence (xn(kAk suchthat \f,xn[-k) is convergent.

This notion was introduced by S. Mazur and W. Orlicz and rediscovered by

P. Antosik. Property (K) has been used to give noncategorical proofs of several

classical theorems, as well as some new results, about open mappings, closed

graphs, and barrelledness (see [1] and references therein or [10, 1.2.15, 1.4]).

It is clear that property (K) implies condition (4) for spaces admitting an

(fi, X, p)-Boolean algebra of projections. On the other hand, we shall give in

this paper two examples, in Remark 3 of §2 and Remark 2 of §3, of spaces

satisfying condition (4) but not property (K). Note, however, that the theorem

of [1] states that every metrizable space having property (K) is barrelled, not

needing the hypothesis of the existence of an (fi, X, p)-Boolean algebra of
projections.

2. Application to spaces of Pettis integrable functions

Let X be a Banach space. A weakly p-measurable function /: fi -» X is

said to be Pettis integrable if the composition t -* (x*, f(t)) is a function in

Lx(p) for every x* £ X' and if for every measurable set A there is an element

in X called the Pettis integral of / over A and denoted by JA f dp such that

(x*, j fdp\ = j (x*, f(t)) dpit)   for all x* £ X'.
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We shall denote by S®(p, X) the space of (classes of) Pettis integrable func-

tions /: fi —> X, endowed with its natural norm given by the formula

:= sup {¡\{x\ fit))\dpit) :x*£X', ||x*||<l}.

Note that \\jAfdp\\ < \\f\\ for every / e 0>(ji, X) and A £ X. For more
details, we refer the reader to [2, II.3; 4, 3.7] and the original paper by Pettis

[11, S3].
For the case when p is the Lebesgue measure in [0, 1 ], Pettis showed that

the normed space 3a(p, L2(p)) is noncomplete [11, 9.4]. Later, it was proved

by Thomas [14, p. 131] and Janicka and Kalton [5] that the same holds if we
replace L2 with an arbitrary infinite-dimensional Banach space; the former

author remarks that the result is valid for any atomless finite measure space.

We shall prove that &>(p,X) is barrelled for every finite measure space. As

we pointed out in the previous section, this result will make it possible to apply

the Banach-Steinhaus and Closed Graph Theorems to ¿Pip, X), in spite of the

fact that this space is noncomplete, in general.

Theorem 2. Let X be any Banach space; then the normed space £Pip,X) of

Pettis integrable functions is barrelled.

Proof. Assume first that (fi, X, p) is atomless. We shall apply Theorem 1. For

A £ X and / £ â°ip, X), define PAif) '■= Xa* f ■ It is clear that PA is a linear
projection in &(p, X) and, since ||P¿(/)|| = \%a ' /II < 11/11 » it follows that

{Pa : A £ X} is equicontinuous.

Condition (3) holds by [11, 2.51] (see also [4, 3.7.2]).
Condition (4): Let (An) be a disjoint sequence in X and iff) a null se-

quence in S^(p, X) with XA„'fn = fn ■ We show that any absolutely summable

subsequence of (fn) fulfills the requirements in (4). Without loss of generality,

assume that a := ¿„ \\fn\\ is finite. Since the /„ are disjointly supported, the

pointwise sum f(t) := ¿„/»(0 exists for all t £ fi; xa„ - f = fn for every

« = 1,2,...; and for every x* £ X' we have

/ \(x*, fit))\dpit) = [JT\(x*,fn(t))\dp(t) < a\\x*\\,
Ja Jsin=x

so that ix*, /(•)) is in Fi(p). Moreover, for every A £ X, we have

Y,n II JA fndp\\ < a, hence the series £„ JA fn dp of the corresponding Pettis

integrals converges to some element xA in the Banach space X. Now, for

every x* £ X' and A £ X we have

(X* , XA) - V (x* ,   [ fndp) = jï2[        (X* , f(t)) dßit) =   f (x* , f(t)) dp(t).
n=\   V JA I n=x JAf\An JA

Hence / is Pettis integrable. This finishes the proof for the case when (fi, X, p)

is atomless.

Now suppose that (fi, X, p) contains atoms. Write fi as ÇlnA U fi^ , where
p is atomless on fi„^ and purely atomic on fi^ . It is clear that 3s (p, X) is

the topological direct sum of the spaces of Pettis integrable functions on Q„a

and CIa > respectively. Of these two spaces, the one corresponding to Q.„a is
barrelled as we have seen.  On the other hand, if there is a finite number m
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of atoms, the space corresponding to fi^ is isomorphic to Xm ; and, on the

contrary, if the number of atoms is countable then it can be identified with the

Banach space of unconditionally convergent series in X. Thus in any case,
¿®(p, X) is the topological direct sum of a barrelled space plus a Banach space,

hence it is barrelled.   Q.E.D.

Remarks. 1. The proof of Theorem 2 can be altered to study the subspace

&>„ip, X) of 3°ip, X) formed by those functions /: fi — X with (x*, fi-))
in Lg(p) for every x* £ X' [11]; when endowed with the norm

U/H, :=sup{||(x*,/(. X* £X', <!},

¿?q(p, X) is a noncomplete (in general) normed space. It can be proved, using
the same technique as above, that this space is barrelled as well.

2. The space ¿®(p, X) is also barrelled when the measure space is cr-finite.

The proof that we have found of this result, however, does not follow directly

from Theorem 2; it is a consequence of a generalization of the sliding-hump

technique of Theorem 1. This, and related results, will be included in a forth-

coming paper [3], where we refer the interested reader.

3. We shall prove now that ¿®(p, L2(p)) (where p is the Lebesgue mea-

sure on the unit interval) does not have property (K). We use Pettis's ex-

ample [11, 9.4] with a slight change of notation. Let (y/j) be a complete or-

thonormal sequence in L2(p), (A,) a sequence of consecutive segments in N

such that A, has 2' elements, and (F7) a sequence of intervals such that

for ieN, the family (F, : / e A,) is the partition of [0, 1) into subintervals

[(/-1)/2', 1/2'), I = 1, 2, ... , 2''. Consider the simple functions fi| : [0, 1] -►
Lain) defined by

Mt)-=YlVj-Xjit),

where Xj denotes the characteristic function of Ej. The sequence (/) con-

verges to zero in ^(p,L2(p)) [11, 9.4]. Suppose that a subseries J^,kfi(k)

converges in S®ip, L2ip)) to a function /. Then, for each fixed index ko and

every ;' £ Ai{ko), we have

0 lim
n—>oo /■Ao.i]

«0,¿¿w (0-/(0
k=\

dß(t)= j      \Xj(t)-(Wj,f(t))\dp(t),
J[0,\]

because, by orthonormality, ZUt=i(V0'»/'(&)(0) — Xj(() forn>ko and t £
[0, 1]. It follows that there is a p-null set ./V, c Ej such that (xpj, f(t)) = 1
for all t £ Ej\Nj . Let N be the union of all Nj (j £ Ai{k), k = 1,2, ...).
Now, if t £ [0, 1], then for every k £ N there exists j(k) £ A,(yt) such that

t £ F;(fc). Hence, if additionally t £ N, then (xpj(k), f(t)) = 1 for every

k £ N. In consequence, for almost all is [0,1], f(t) is a function in L2
(remember /: [0, \]—>L2) that has an infinite number of Fourier coefficients

equal to 1, which is clearly impossible.

3. Application to spaces of Bochner integrable functions

Let L(q) be a solid Banach lattice of measurable scalar functions rp: fi —► R.

(As usual, we identify functions that are equal p-a.e.) Thus if tj> e L and ip

is a measurable function such that  \<p(-)\ < |<rH-)l   p-a.e., then  xp £ L and
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q(v) < Q(4>) ■  Examples of L are the classical Lpip) spaces (1 < p < oo),

Orlicz spaces, and Köthe normed spaces.   These and more examples can be

found in, e.g., [7, 9, 15], or [16, Chapter 15].
Recall that L is said to be order-continuous if

lim  Xa • 4> - 0   for all 0 e F .
ß{A)^0

This is satisfied, for instance, when L — LPip) (1 < p < oo) or L = F<j>(p) is

an Orlicz space, where O satisfies the A2 condition.

Definition. Let X be a normed space (not necessarily complete). We define the

space L(X) as the space of (classes of) strongly measurable functions /: fi —»

X such that the scalar function tf>(-) := ||/(-)|| is in L. We shall consider on

L(X) the topology defined by the norm f -* ?(||/(-)l|). In general, L(X) will
be noncomplete.

When L = Lp(p) and A' is a dense subspace of a Banach space Y, L(X) =
Lp(p, X) is a dense subspace of the space Lp(p, Y) of T-valued, Bochner

p-integrable functions [2, II.2]. Other examples can be found in [16, Ch. 15].

Theorem 3. Let L be an order-continuous solid Banach lattice of measurable

functions defined over an atomless, finite measure space (fi, X, p), and let X

be a normed space. Then the space L(X), endowed with the corresponding

normed topology, is barrelled. In particular, LP(X) is barrelled for 1 < p < oo.

Proof. We shall apply Theorem 1. For A £ X and / £ L(X), define Pa(P) '■=
Xa • f "• Then it is clear, by the assumptions on L and the definition of the

topology in L(X), that {Pa : A £ X} is an (fi, X, p)-Boolean algebra of
projections in L(X).

To verify condition (4), let (A„) be a disjoint sequence in X and (f„) a

null sequence in L(X) such that PA„(fn) = fn- The fact that /„ —> 0 in

L(X) implies that ||/i(-)ll -» 0 as functions in L. Since F is a Banach space,

there exists a subsequence «(1) < «(2) < • • • such that the series £ ||/,(fc)(*)ll
converges in L, and it is clear that the sum of this series is, precisely, the

pointwise sum (in R). Now, the function /(•) := E /«(£)(•) (pointwise sum in

X) is strongly measurable and ||/(-)|| = E ll/«(/t)(OII € F, so that / £ L(X)
and / • XA„m = fn(k) for all k = 1, 2, ... .   Q.E.D.

Remarks. 1. This theorem is a bit striking since we do not require X to be

barrelled. It is indeed the case that every separable Banach space Y contains a

dense subspace X that is not barrelled and, nevertheless, we have that Lx (p, X)
is a dense barrelled subspace of Lx (p, Y) if (fi, X, p) is atomless.

2. Take (fi, X, p) as the unit interval with Lebesgue measure and X a
normed space not satisfying property (K) [10, 1.2.16(b)]. Then LX(X) satisfies

condition (4) as we saw in the proof of Theorem 3, but Lx (X) does not have

property (K) : simply note that the constant functions form a closed subspace
of LX(X).

3. It is easy to see, using the same method of proof, that Theorem 3 can

be extended to the case when L is an order-continuous Fréchet lattice (some

examples may be found in [8, 9, 12]). Moreover, using a diagonal procedure in

the verification of condition (4), one can show that Theorem 3 also holds when

X is merely metrizable (L(X) being defined in an analogous way).
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Note. M. Florencio, P. J. Paúl and C. Sáez gave a proof of Theorem 3 for the

case of the space LX(X) under restrictive hypotheses, namely, that (fi, X, p)

is an atomless Radon measure space and X' satisfies the Radon-Nikodym prop-

erty. This was presented to the II Conference on Function Spaces held Septem-

ber 1989 in Poznan, where the collaboration with L. Drewnowski started. The

authors would like to thank F. Bombai (Madrid), F. Freniche (Sevilla), P. Greim

(Charleston, South Carolina), and the referee for their helpful comments and

remarks. Thanks also to La Consejería de Educación y Ciencia de la Junta
de Andalucía for partially supporting the stays of P. J. Paúl at Poznañ and

L. Drewnowski at Seville.
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