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BLOCKS OF SMALL DEFECT

ALBERTO ESPUELAS AND GABRIEL NAVARRO

(Communicated by Warren J. Wong)

Abstract. A group of odd order G with Op(G) = 1 has a block of defect less

than [n/2], where p" = \G\p . In addition, if G is supersolvable by nilpotent,

G has a block of defect zero.

1. Introduction

It is an interesting problem to give necessary and sufficient conditions for

the existence of p-blocks of defect zero. If a finite group G has a block of

defect zero, it is well known that Op(G) = 1, although, of course, this is not a

sufficient condition. Ito proved [3, X.6.5] that if G is a nilpotent by nilpotent

group of odd order, then G has a block of defect zero iff Op(G) — 1.

Recent results on regular orbit theorems have associated conditions for the

existence of blocks of defect zero [1]. For groups of odd order, with Op{G) = 1,

the exceptions are essentially nilpotent by supersolvable as Theorem 1 of [1]

shows us.
In general, we try to find the smallest defect d(B) of a block B of G. This

is given in Theorem A below.

Theorem A. Let G be a {solvable) group of odd order such that Op(G) = 1 and

\G\P = p". Then G contains a p-block B such that d(B) < [n/2]. The bound
is best possible.

It is not true in general that there exists a block B with d(B) < [n/2], as

G = A1   (p — 2) shows us.
By work of Michler and Willems [7,8] every simple group except possibly the

alternating group has a block of defect zero for p > 5. Perhaps the following

has an affirmative answer.

Question. If G is a finite group with Op(G) = 1, p > 5, and \G\P - p" , does
G contain a block of defect less than [n/2] ?

If SF is the class of supersolvable by nilpotent groups, we can prove the
following.
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Theorem B. Let CeF with \G\ odd. Then G has a p-defect zero character

if and only if Op(G) = 1.

2. Blocks of defect less than [n/2]

The next lemma is a key tool for proving Theorem A. We denote by F(G)

the Fitting subgroup of the group G.

2.1. Lemma. Let G be a group of odd order and let V be a faithful and irre-

ducible KG module, char(TC) being odd. Then there exists a normal subgroup

H of G (possibly 77 = 1) and a vector v e V such that: CG(v)* C H - F (H)
and H/F (H) is abelian.

Proof. See the proof of Theorem 3.1 of [2].

Theorem A. Let G be a (solvable) group of odd order such that Op(G) = 1 and

\G\p = pn . Then G contains a p-block B such that d(B) < [n/2]. The bound
is best possible.

Proof. Induction on \G\. Consider G = G/9(G). As F (G/9(G)) = F(G)/
9(G), we have that Op(G) = 1 and \G\P = \G\P . If 9(G) ¿ 1, then the result
is true for G. Let B be a p-block of G such that d(B) < [n/2]. By Lemma
V.4.3. of [3], there exists a p-block B of G such that d(B) = d(B). Hence
we may assume that 9(G) — 1.

Now, V = Itt(F(G)) is a faithful and completely reducible G/F(G)-module
(over different fields, possibly).

Put V = V\ © ■ • • © Vt, where each V¿ is an irreducible G-module.

Define K¡ = CG(V¡) , G¡ = G/K¡ and use the bar convention. By the lemma

above, there exists a normal subgroup //, of G containing K¡ and an element

Xi € Vi such that CG.(Xi)* ç 77, - 7^(77,). Furthermore, 77,7^(77,) is abelian.
Consider X = X\ x • • • x Xt and put C = Cq(X) .
We may view G/F(G) as a subgroup of G\ x • • • x G,. This shows that C ç

F}(G) and C n F2(G) = F(G), where, as usual, FX(G) = F(G), 7;,i(G)/F,_1(G)

= F(G/Fi_l(G)).
We consider separately two cases.

(1) \C\p<\G\p]/2.
Take x € Irr(G) lying over X and let B be the p-block of G contain-

ing x ■ As T^G) is a p'-group, Lemma V.2.3 of [3] shows that every irre-

ducible character y/ in B has X as an irreducible constituent. Now y/(\)p >

\G:IG(X)\p>\G\pXI2.
The result follows.
(2) |C|P>|G|P1/2.

Now \F3(G)/F2(G)\p > \G\pl/2 .

Let P/F2(G) be a Sylow p-subgroup of F3(G)/F2(G). Where Y =
Opl(F(G/F(G)), observe that W = Irr(y/0(F)) is a faithful and completely
reducible T'/7r2(G)-module.

By Gow's regular orbit theorem [4, 2.6], we have ß e W such that Cp(¡u) =

F2(G). We may view ¡x as a character of the preimage X of Y in G. Observe

that X is a p'-group. Take x € Irr(G) lying over /u. Now x lies over an ir-

reducible character y/ of P lying over ß. Clearly, y/(\)p > \F¡(G)/F2(G)\P >
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\G\p1'2. As P is normal in G, we have #(l)p > w(l)p ■ Now the same argu-
ment as in case ( 1 ) completes the proof.

To show that the bound is best possible, consider two odd primes p and q

such that q = 1 (mod p ). Now (qp - \)/q- 1 is odd and (qp - Y)/q- f)P =P-
Now Cp x GF(qp)* acts on GF(qp)+ , Cp acting as a Galois automorphism.

Thus 77 = Cp x C(?P_i/g_i) acts on V = Cq x • • • x Cq (p times) and V does
not contain any regular 77-orbit. Consider X = 77 x V and let G be the direct

product of m copies of X. Then, if x € Irr(G), we have xWp < Pm ■ Thus

d(B) > m for any p-block of G and \G\P = p2m .

3. Supersolvable by nilpotent groups

We need a regular orbit theorem for proving Theorem B. It is a slight gener-

alization of [4, 2.6]

3.1. Theorem. Let G be a group of odd order and let V be a faithful irreducible

KG-module, where K is a field of odd characteristic q. Assume that G is p-

nilpotentfor some prime p ^ q and that

Vop,(G) = Vi®---®V,,

where each V¡ is a l-dimensional KOp>(G)-module. Then there exists v e V

such that CG(v) - 1.

Proof. We induct on \G\.
Write 77 = Opi(G). We claim that VH is not homogeneous. Let W be an

irreducible submodule of VH and let 7 = {g e G | W g = W as TvTT-modules}.
By hypothesis, dim*: W — 1 .

If I = G, then IF is a faithful l-dimensional TCTT-module and V is 7C77-
homogeneous.

A well-known argument implies that 77 is contained in Z(G). Then G is

nilpotent and since V is faithful, q does not divide \G\. Now, Gow's regular

orbit theorem [4. 2.6] gives us v e V such that CG(v) = 1.

Thus, we may assume that Vu is not homogeneous. Then, we may find

a normal subgroup N of G of index p and an irreducible Tí TV-module U

with UG = V such that W is an irreducible submodule of Uh ■ By Clifford's
theorem, we may apply induction to N and find u e U such that

CN(u) = CN(U).

If xi, ... , xp is a set of coset representatives of TV" in G, by using the facts

that nu^ -u V« e N (because q and \G\ are odd) and that coreG(C/v(«)) =

CG(V) = 1, it can be checked that CG(v) = 1, where

v = U<S>Xi H-h«® Xp-i - u ® xp .

This finishes the proof of the theorem.

Recall that a group G has a p-block of defect zero if it has an irreducible

character x with x(\)p = \G\p .

3.2. Lemma, (a) Let H be a subgroup of G and let ß e Irr(77), with ßG =

X € Irr(G). Then *(1)„ = \G\P if and only if ß(l)p = \H\P .
(b) Let N be a normal subgroup of G, let de Irr(/Y) and let x € Irr(G| 6).
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Ifx(\)p = \G\p .then 0(\)P = \N\P. Conversely, if 0(1), = \N\P, and \G : N\
is a p'-number, then xWp — \G\p ■

Proof, (a) Since \G : H\/i(l) = *(1), we have that

\G\p/x(l)p = \H\p/ß(l)p.

(b) By (a) and the Clifford correspondence, we may assume that Xn = u6,

for some integer u. Thus \G\P = up6(\)p .

We know that 8(\)p divides \N\P, and that up divides \G/N\P [6, 11.29].
Since \G/N\P\N\P = \G\P , necessarily, we will have

Up = \G/N\p   and   6(l)p = \N\p.

Conversely, suppose that 0(1 )p = \N\P, and that \G : N\ is a p'-number.

Let T = IG(6), let ß e Irr( T) the Clifford correspondent of x over 6, and
write ßN — v6, for some integer v . Then v is a p'-number,

ß(l)p = 6(l)p = \N\p = \T\p,

and by (a) the proof is complete. Now we can prove Theorem B.

Theorem B. Let G e SF with \G\ odd. Then G has a p-defect zero character

if and only if Op(G) = 1.

Proof. If x € Irr(G) with %(X)P = \G\P , let 8 be an irreducible constituent of

Xop(G) ■ By Part (b) of the lemma above, 0(1) = Op(G), and thus Op(G) - 1.

Suppose that Ge^" with \G\ odd. We prove that G has a p-defect zero

character by induction on \G\.

Let TV be a normal supersolvable subgroup of G such that G/N is nilpotent.

Let P be a Sylow p-subgroup of G and let F = F (G) be the Fitting subgroup
of G.

First we prove that G/N is a p-group. Since G/N is nilpotent, PN is a

normal subgroup of G. Since Op(PN) = 1, by induction and the lemma, we

may assume that PN = G.
We claim that G is p-nilpotent with Op>(G) supersolvable. Let 77 be a

Hall p'-subgroup of G. Since G/N is a p-group, 77 is contained in TV. Since

N is supersolvable, N/F(N) is abelian. But F(N) is a p'-group, because

Op(F(N)) = 1. Thus F(7V) ç 77 ç N.
This implies that 77 is normal in G, as wanted.

Now, since F/9(G) = F (G/9(G)), 0P(G/9(G)) = 1 , and we may assume
that 9(G)=l.

Write F = Ei x • ■ ■ x Es, where the 7s,'s are minimal normal subgroups of

G.
If E is any normal subgroup of G contained in F, we claim that there

exists X 6 Irr(£) such that IG(X) = C = CG(E).
Suppose that \E\ is a ^-power, for a prime q . Observe that E ç 77. Since

H is supersolvable, by Clifford's theorem Eh is a direct sum of 1 -dimensional

TiTs-submodules, and so it is EHC/c > K — GF(q).

Let Ê =Irr(£'). Then Ê is a faithful irreducible 7C[G/C]-module.
Since Effc/c = X\@---@ Xt, where the X¡'% are l-dimensional 7<[77C/C]-

submodules, it follows that

Êhc/c = X[®---®Xt,
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where X¡ = lrr(Xj)  is a   l-dimensional irreducible 7v[77C/C]-module.   By

Theorem 3.1 above, the claim is proved.

Now, let Xi e Irr(7i,) such that IG(X¡) = CG(E¡), and let

X = X\ x • • ■ x Xt.

Then

IG(X)=    fl    CG(E¡) = CG(F) = F.
i=\,... ,s

Thus XG € Irr(G), XG has p-defect zero and the proof is complete.
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