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SYMMETRY OF DICHROMATIC LINKS

YASUYUKI MIYAZAWA

(Communicated by Frederick R. Cohen)

Abstract. Let L be a 1-trivial dichromatic link in S3 and L its covering

link. A relationship between the dichromatic link polynomials, defined by Hoste

and Przytycki, of L and Z is given. As an application, it is shown that the

link l\ has no symmetries with fixed point set is either of the components.

1. Introduction

A 1-trivial dichromatic link in S3 is a link having at least two components,

one of which is unknotted and labeled, or colored, " 1 ", while all other compo-

nents are colored "2". If L is a 1-trivial dichromatic link, then we may isotope

L until the 1-component, that is the component colored "1", is the z-axis union

the point at infinity. If we now project the link into the x-y plane, we obtain a

diagram of the 2-sublink in the punctured plane 7?2 - {0} . We may obviously

use such punctured diagrams to represent 1-trivial dichromatic links. Gener-

alizing the Jones polynomial [J], Hoste and Przytycki [HP] defined a unique

polynomial invariant in Z[A±l, h] of unoriented 1-trivial dichromatic links as

follows:
dL(A,h) = (-A3)-^°)(D),

where D is any punctured diagram of the link L, and (D) is the invariant of

D determined by the following properties:

(1) <-0> = i,

(2) (Q) = h,

(3) (X) = ^()0 + ^-'(x),

(4) (-OK) = -(A2 + A-2)(-K),  K¿0,

(5) (Q K) =-(A2 + A~2)h('K), K¿0,

and sw(7)) is the self writhe of D, that is, the sum of the signs of those crossings
between strands belonging to the same component. Here we follow Kauffman's

notation [K] with the additional convention of marking the puncture with a dot.

If L is a 1-trivial dichromatic link, we denote the 1-component by L\ and the
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2-sublink by L2 . Let N(L\) be a tubular neighborhood of L\ . Let wr(L) be
o

the wrapping number of L2 in the solid torus V = S3 - N(L\), that is, the

minimal geometric intersection number of L2 with any meridian disk of V.

In [HP] they show

(6) degA dL < wr(L),

where degA í¿l is the highest degree of h appearing in úí¿ . We consider the p-

fold cyclic branched cover qp: S3 —> S3 branched over L\ . Then the upstairs

branch set L\ and the preimage L2 = q~[(L2) again constitute a 1-trivial

dichromatic link L = L\ U L2. Then we have the following:

Theorem 1. Let L be a l-trivial dichromatic link. Suppose wr(L) = m. Let

f(A) be the coefficient of hm in dL ■ Then the coefficient of hm in d~ equals

A6rS-to-Wm-l){f(A)y, where r e Z, S = -(A2 + A~2), and f(A) £ Z[A±l].

In particular, if L2 and L2 are knots, then r = 0.

-
Concerning the wrapping numbers of L and L, we have:

Proposition 1. Let L be a 1 -trivial dichromatic link. Then the wrapping number

of L2 equals the wrapping number of L2.

Combining Theorem 1, Proposition 1, and (6), we obtain:

Theorem 2. Li?r L be a i-trivial dichromatic link. Then deg¿ í7¿ = wr(L) //

and only if degA d~ — wr(Z).

If L is a 1-trivial dichromatic link, we say that L admits a Zp -action fixing

L\ if there exists a Zp-action of S3 that preserves L and has fixed point set

Li.
As a corollary of Theorems 1 and 2, we have:

Corollary 1. Let L be a l-trivial dichromatic link satisfying degA dL = wr(L).

Let p be an integer that is more than 1. If L admits a Zp-action fixing L\,
there exist an integer r and a Laurent polynomial g(A) such that the coefficient
ofh™^ in dL is Af>rô-(P-^m^-l\g(A))}P.

If a 1-trivial dichromatic link L admits a Zp-action fixing L\, then it is
shown in [HP] that

dL(A, h) = dL(A~l, h) mod(A4" -\,p)

for L, where p is prime. If L is a link that is both 1-trivial and 2-trivial, then
we can also consider a Zp -action on S3 with fixed point set L2 . Using this,

they show that the link L = l\ [R, Appendix C] as shown in Figure 1 admits

no Zp-actions fixing L\ for p > 2 or fixing L2 forp>3. Using Corollary 1,

we can show that 1\ admits no Zp-action for any integer p > 2 such that the

fixed point set is either L\ or L2. Other examples are also given in §4. In §2

we prove Theorem 1. In §3 we prove Proposition 1.
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.

2. Proof of Theorem 1

We now recall "state models" by Kauffman [K]. Let D be a diagram of a link

L. If U is the underlying planar graph for D, then a state of U is a choice

of splitting marker for every vertex of U. Let S be a state for a diagram D

and D(S) the diagram obtained from D by splitting the state 5.

If we consider the diagrams of links, we can define the wrapping number of

them as follows: Let D be a punctured diagram of L. We define wr(D), the

wrapping number of D, to be the minimal intersection number between D and

any ray emanating from the puncture and extending to infinity.

Lemma 1. Let D be a punctured diagram of a l-trivial dichromatic link L with

wr(£>) = «7.. Then there exists a state S of D satisfying degA(7)(5)) = m .

Proof. Since wr(Z)) = m we may picture D as in Figure 2. We induct on m .

If m = 0 or 1, then any state S of D suffices. If m > 1 then consider the

v-.-'

m strings

Figure 2
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points labelled A and B in Figure 2. It is possible to smooth some subset of
the crossings of D so that the string entering T at A then exits at B , has no
crossings, and is part of an innermost circle of nontrivial ones in the resulting

diagram D', where a nontrivial circle is a simple closed curve that is not null-
homotopic in 7?2 - {0} . To see this, simply enter T at A and smooth each

crossing as it is encountered so as to always turn to the right. If this process does

not force one to exit at B then wr(D) < m . Now D' = D[ U D2 where D[ is

the innermost circle mentioned above and D'2 has wrapping number m - 1. By

induction and property 5 of ( ), D' has a state S' such that degh(D'(S')) = m.

Now let S be the extension of S' to D obtained by incorporating the original

smoothings used to produce D' from D.   D

Let D be a diagram of L as shown in Figure 2. Let U be the underlying

planar graph for D and UT the subgraph of U for a tangle T. We may regard

a state S1 for D as a state for T, that is, a choice of splitting marker for every

vertex of Uj is S. Let T(S) be the tangle obtained from T by splitting the
state S. Then we easily obtain:

Lemma 2. Let L be a l-trivial dichromatic link with wr(L) = m > 1 and D a

punctured diagram of L as shown in Figure 2. Let S be a state for D. Then

the following two conditions are equivalent:

(1) áeu(D(S)) = m;
(2) T'(S) is a trivial m-braid,

where T'(S) is the tangle obtained from T(S) by removing all the trivial com-

ponents contained entirely in T(S).

Remark. Lemma 2 really is just a statement about the bracket polynomial of a
diagram with no crossings. Namely the following lemma:

Lemma 2 '. Let Dtn be a punctured diagram having no crossings, t trivial

circles, and « nontrivial circles. Then (Dtt„) = ôt+n~lh" .

This lemma is essentially the same thing as Lemma 2.

We define (D\S) for a diagram D and a state S by the formula

(D\S) = A"-2',

where n is the number of crossings of D and i is the number of state markers
corresponding to splittings which join the regions labelled A~x in Figure 3.

Lemma 3. Let L be a l-trivial dichromatic link. If wr(L) = m, then the

coefficient of hm in dL has the form ôm~lf(A), where f(A) € Z[A±l].

Figure 3
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Proof. Since wr(L) = m, a diagram D of L can be drawn as in Figure 2.

Then

(D) = ^2(D\S)(D(S)),
s

where this summation is over all states of the diagram. Now we compute the

coefficient of hm in dL ■ We need only consider the states

<9> = {S\deëh(D(S)) = m},

which by Lemma 1 is nonempty. Let |7J)(S)| be the number of the trivial

components in D(S) (recall Lemma 2'). Let D'(S) be the diagram obtained

from D(S) by removing all the trivial components contained entirely in T(S).

If m = 0, then (D(S)) = ¿M*)!"1. If m > 1, then

(D(S)) = ¿1°^ <£>'(£)) = ¿lö(S)l+(m-U/^

So the coefficient of hm in (D) is given by

£ (Z>|S)«5H>(s>l+C»-i) = Sm~x Y, (D\S)âMW.

ses* ses*

Hence the coefficient of hm in dL is

(_y43)-sw(fl)(jm-l  J2 (D\S)ô\°^ = Sm~l i (-^)-sw(û)  £ (D\S)ôWW \ .

sas" { ses* J

Putting f(A) = (-^3)-sw<°) 2ZseS"(D\s)âmS)l > we obtain the desired formula.

D

If D is a diagram^of L as shown in Figure 2, then the diagram D given in

Figure 4 is that of L, where each T¡, I < i < p, is a copy of T and T is

the sum of T\,T2, ... ,TP . Let U be the underlying planar graph for D and

UT¡ subgraph of U for T¡. In Figure 4 let Si, S2, ... , Sp be the states for
the tangles T\,T2, ... ,TP , respectively. The union of S\,S2, ... ,SP defines

a state S for the diagram D, which we denote by S = (S\,S2, ... ,SP). We

may also regard S as a state for T. Let 77(5,-) (resp. T'(S)) be the tangle

obtained from T¡(S¡) (resp. T(S)) by removing all the trivial components

contained entirely in T¡(S¡) (resp.  T(S)). Then we have:

Lemma 4. Let L be a 1 -trivial dichromatic link with wr(L) = m > 1 a«<i t5 a

punctured diagram of L as shown in Figure 4. Let S be a state for D. Then

the following three conditions are equivalent:

(1) For each i,  l<i<p, Tf(Si) is a trivial m-braid;

(2) T'(S) is a trivial m-braid;

(3) deg„(73(S)> = m.

Let L be a 1-trivial dichromatic link. Let D be a diagram of L as shown

in Figure 2 and D the diagram of L as shown in Figure 4. Suppose L2 is

an oriented link having t components: L2 = K\ u K2 U • • • U Kt. Let Ku be

the preimage of Ku, 1 < u < t. We also denote the components of Ku,

1 < u<t,by KuA, Kk,2, ... ,Ku,„u,so L2 = KXA U • • • UJC,,,, U-- • UK,A U
• • • U Kt, „,, where Ku,, is oriented so that it induces the same orientation on

Ku downstairs. Putting r = J2'u=i 2~li^j lk(Kuj, Kuj), we easily obtain:
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r^j

T

m   strings

Figure 4

Lemma 5.  sw(D) = psw(Z>) - 2r.

Proof of Theorem 1. Let D be a diagram as shown in Figure 2 and D the

diagram as shown in Figure 4. In Figure 4 let S\ , S2, ... , Sp be the states

for the tangles TX,T2, ... ,TP, respectively. Let S = (S\,S2, ... ,SP). By

Lemma 1, there exists a state 5 = (S\, S2, ... , Sp) satisfying degh(D(S)) = m .

In case m — 0 it is easy. Suppose m > 1. By Lemmas 2 and 4, in order to
compute the coefficient of hm in d~, we may only consider the states

&= {S\ de%h(D(S)) = m} = {(^ , S2, ... , Sp)\degh{D(Si)) = m,   1 < i < p),

where we regard S¡, 1 < / < p, as a state for 7). Moreover by Lemma 4, we

have

|73(5)| = ¿|7)(5,)|,        (Z)|S> = tl(D\St).
i=i

[1
1=1

The coefficient of hm in (D) is given by

£ (73|5)r5lí>(s)l+(m-1) = á"1-1 £ (fiWi>) áEtl |ß(S/)l

where ¿?¿ = {5,1 degA(Z)(5,-)) = m} . Then by Lemma 5 the coefficient of hm in
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d~L is

(_A3y^Ô)Sm-l (   J2 (D\Si)d~MS"

{St&Tt

„A3yVsMD)+2rôm-l  |   £ (D\S¡)0WS']

= A6rSm-l   J (_¿3)-«íí»   £ {D\S¡)0^S''

Putting g (A) = (-^Vsw(0)£Sie^(7>|S,)¿|D(5/)l, we obtain the formula by

Lemma 3.   D

3. Proof of Proposition 1

In case m = 0, it is obvious.  Suppose wr(L) = m > 1 . We may assume

that a disk Do giving the wrapping number of L2 is a standard meridian disk

of V = S3 - N(Lx). We denote the preimage of D0 in V = qpl(V) by

7J>i, D2, ... , Dp. Suppose Dx is not a disk that gives the wrapping number

of L2. Let C be a circle obtained by moving dD\ slightly on d V. Hence

C n dD\ = 0 . We consider properly embedded disks 3! = {D\dD = C} in V
satisfying:

(1) D intersects L2 transversally in less than m points;

(2) D intersects D\ l)D2 U • • • UDP transversally, and hence the intersection

consists ofdisjoint circles; jind

(3) D n (Di U D2 U • • • U Dp) n L2 = 0 .

Let n(D) be the number of circles of (2). Let D be a disk such that n(D) <

n(D) for any D £3. Suppose n(D) = 0. Then D lies in a fundamental

region, which is one of the p regions divided by D\ , D2, ... ,DP . Hence

qp(D) is a disk having no singularities in V, and we have #{qp(D) n L2] =

#{D n L2} < m = #{Do n L2} . This is a contradiction. Suppose n(D) ^ 0.

Let Co be one of innermost circles in D and Co C Dk, and let D' be the

disk in D with dD' — Co- Hence D' is a disjoin V and is embedded in a

fundamental region W. Let Dk be the disk in Dk with dDk - C0 . See Figure
o

5. If #{D' nL~2} < #{Dk n L2} L then for thejliskj) = (Dk - Dk) LLD', we

have the following inequality #{73nL2} <#{DknL2} . Hence #{qp(D)nL2}

= #{DnL2} < #{DknL2} = #{D0nL2} , a contradiction. Suppose #{D'nL2} >

#{Dk n L2] . Then (D - D') U Dk is an immersed disk in V . We denote it by

D. Note that #{73nL2} < m . We consider the cases:

Case 1. D is a disk having no singularities.

Case 2. D has singularities.

In Case 1 we can push D slightly away from Dk near Dk . This shows that

«(D) < «(D), which is a contradiction.
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Figure 5

In Case 2 we note that singularities are circles C\, C2, ... , Cs in Dk and

consist of double points. Let N(C¡) be a tubular neighborhood of C,•, 0 < i <

s, in V. We consider N(C0), N(Q ),..., N(Q) such that N(Q) nL2 = 0,
0 < i < s, and N(Q)nN(Cj) = 0 , i jí j . By a suitable cut and paste operation

in N(C\) as Hempel's Lemma (see [H, Lemma 4.6]), we can obtain a new disk

D' whose singularities are C2, ... , C^. Then the number of intersection of

D' and L2 equals that of D and L2 since 7V(Ci) D L2 = 0. Using this

repeatedly, we have a nonsingular disk D with #{DnL2} = #{Dn L2} < m.

We can push the part DnDk of D slightly away from Dk . This shows that

«(D) < «(D), which is a contradiction. It follows that Di is a disk giving the

wrapping number of L2.

4. Applications

Using Corollary 1, we prove that the link 72 [R, Appendix C] as shown in

Figure 6 admits no Zp -action for any integer p > 2 such that the fixed point

set is each of the trivial components, and that the link 8| [R, Appendix C] as

shown in Figure 7 admits no Zp -action for any integer p > 3 such that the

fixed point set is the component colored "1."

Since L — l2 is a link that is both 1-trivial and 2-trivial, we may compute í/¿

relative to either component. Call these two invariants dL and d\ , respectively.

But 72 is interchangeable, so dL = d\. The highest degree of « in dL is 3.
Thus

deg„4 = wr(L(2>) = 3,

where wr(L(2)) is the wrapping number of L2 in the solid torus S3 - N(Li).

Suppose there is a Zp -action with fixed point set L\ for an integer p>2. Then

by Corollary 1 there exists a Laurent polynomial f(A) such that the coefficient

of h3 in dL is equal to ô~2{p~{){f(A)}p . On the other hand the coefficient of

h3 in dl is -A4(A2 + A~2)2(A4 - 1). Thus

{f(A)/S2}» = -A4(A*-l).

The right-hand term has the factor A - 1. Hence the left-hand term must have

the factor A - 1, so it has the factor (A- 1 )p . But the right-hand term does
not have this factor. This is a contradiction. Next we consider L = 8|. The

highest degree of « in dL is 2. Thus

degA¿¿ = wr(L(2>) = 2.
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Figure 7

Suppose there is a Zp-action with fixed point set L\ for an integer p > 2.

Since the coefficient of h2 in dL is -(A2 + A~2)(A4 - l)2 , by Corollary 1

A6rô-{J>-x){f(A)Y = -(A2 + A~2)(AA - I)2,

for some f(A) £ Z[A±l] and for some integer r. Thus

{f(A)/ô}e = A-6r(A*-l)2.

This is impossible for p > 3. If p = 2, then 8^ admits a Z2-action with
quotient the Whitehead's link.

Remark. l\ — L — L\ u L2 admits no Zp-action for any integer p > 2 such

that the fixed point set is either L\ or L2. Suppose l\ admits a Zp-action.

Then there exists a factor link L = L\ U L2 of L. Since L2 is a knot and

the linking number lk(L\, L2) of Li and L2 is zero, L2 becomes a knot and

the linking number lk(Li, L2) is equal to zero. This is a contradiction by the

following fact: Suppose L — K\ U 7v2 is a two component link such that K\ is
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a trivial knot and lk(7vi, K2) = 0. If we consider the « fold cyclic branched

cover of S3 branched over K\, then for a covering link Z = K\ U 7C2 of L,

K2 is an «-component link.
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