ON OPIAL'S INEQUALITY FOR $f^{(n)}$

A. M. FINK

(Communicated by Andrew M. Bruckner)

Abstract. We prove inequalities of the type

$$
\int_{0}^{h}\left|f^{(i)}(x) f^{(j)}(x)\right| d x \leq C(n, i, j, p) h^{2 n-i-j+1-2 / p}\left(\int_{0}^{h}\left|f^{(n)}(x)\right|^{p} d x\right)^{2 / p}
$$

when $f(0)=f^{\prime}(0)=\cdots=f^{(n-1)}(0)=0$. We assume that $f^{(n-1)}$ is absolutely continuous and $f^{(n)} \in L_{p}(0, h)$, with $p \geq 1, n \geq 2$, and $0 \leq i \leq$ $j \leq n-1$.

Opial's inequality is $\int_{0}^{h}\left|f(x) f^{\prime}(x)\right| d x \leq \frac{h}{4} \int_{0}^{h} f^{\prime}(x)^{2} d x$ when $f(0)=f(h)$ $=0$. Shortly after this result was published it was realized that the inequality followed from two applications of the inequality

$$
\int_{0}^{h}\left|f(x) f^{\prime}(x)\right| d x \leq \frac{h}{2} \int_{0}^{h} f^{\prime}(x)^{2} d x
$$

when $f(0)=0$. Various generalizations of this result have been given, see Mitrinović [2] or Mitrinović, Pečarić, and Fink [3]. Here we look at the inequality

$$
\begin{equation*}
\int_{0}^{h}\left|f^{(i)}(x) f^{(j)}(x)\right| d x \leq C(n, i, j, p) h^{2 n-i-j+1-2 / p}\left(\int_{0}^{h}\left|f^{(n)}(x)\right|^{p} d x\right)^{2 / p} \tag{1}
\end{equation*}
$$

when $f(0)=f^{\prime}(0)=\cdots=f^{(n-1)}(0)=0$. We assume that $f^{(n-1)}$ is absolutely continuous and $f^{(n)} \in L_{p}(0, h)$, and $p \geq 1, n \geq 2$, and $0 \leq i \leq j \leq n-1$.

We begin with the statement of the
Theorem. Let f have $(n-1)$ continuous derivatives and assume that $f^{(n-1)}$ is absolutely continuous and $f^{(n)} \in L_{p}(0, h)$. Let f have an n-fold zero at 0 . Then inequality (1) holds with best possible constants $C(n, i, j, p)$ given by

$$
\begin{equation*}
C(n, i, i+1, p)=\frac{1}{2(n-i-1)!^{2}\left[(n-i-1) p^{\prime}+1\right]^{2 / p^{\prime}}} \tag{2}
\end{equation*}
$$

for $i=0, \ldots, n-2$, while

$$
\begin{equation*}
C(n, i, j, p) \leq \frac{2^{-1 / p}}{(n-i-1)!(n-j)!\left[(n-j) p^{\prime}+1\right]^{1 / p^{\prime}}\left[(2 n-i-j-1) p^{\prime}+2\right]^{1 / p^{\prime}}} \tag{3}
\end{equation*}
$$

Received by the editors November 21, 1990.
1980 Mathematics Subject Classification (1985 Revision). Primary 26D10.
Key words and phrases. Opials's inequality.
for $0 \leq i \leq j \leq n-1$. Equality holds in (1) if

$$
f(x)=\frac{1}{(n-1)!} \int_{0}^{x}(x-t)^{n-1}(h-t)^{(n-i-1) p^{\prime} / p} d t, \quad p>1 .
$$

The proof of this theorem is based on the representation
(4) $f(x)=\frac{1}{(n-1)!} \int_{0}^{x}(x-t)^{n-1} f^{(n)}(t) d t=\frac{1}{(n-1)!} \int_{0}^{h}(x-t)_{+}^{n-1} f^{(n)}(t) d t$,
where $x_{+}=\max (0, x)$. We will give two proofs of (2), the first because it gives a guide to the proof of (3). The second is given at the end of the paper and is simpler.

Using (4) we can easily derive

$$
\begin{aligned}
f^{(i)}(x) f^{(j)}(x)= & \frac{1}{(n-1-i)!(n-1-j)!} \\
& \times \int_{0}^{h} \int_{0}^{h} f^{(n)}(t) f^{(n)}(s)\left[(x-t)_{+}^{n-1-i}(x-s)_{+}^{n-1-j}\right] d t d s
\end{aligned}
$$

We prefer to symmetrize this to get

$$
\begin{equation*}
f^{(i)}(x) f^{(j)}(x)=\frac{1}{2(n-1-i)!(n-1-j)!} \int_{0}^{h} \int_{0}^{h} f^{(n)}(t) f^{(n)}(s) k(x, t, s) d s d t \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
k(x, t, s) \equiv(x-t)_{+}^{n-1-i}(x-s)_{+}^{n-1-j}+(x-s)_{+}^{n-1-i}(x-t)_{+}^{n-1-j} \tag{6}
\end{equation*}
$$

Proof of (2). We use relation (5) to get

$$
\begin{align*}
& \int_{0}^{h}\left|f^{(i)}(x) f^{(i+1)}(x)\right| d x \\
& \quad \leq \frac{1}{2(n-1-i)!(n-i-2)!} \int_{0}^{h} \int_{0}^{h}\left|f^{(n)}(t)\right|\left|f^{(n)}(s)\right|\left(\int_{0}^{h} k(x, t, s) d x\right) d t d s \tag{7}
\end{align*}
$$

We note that equality holds if $f^{(n)}$ is of constant sign since this implies that $f^{(i)} f^{(i+1)} \geq 0$ and $k \geq 0$. Now the kernel $k(x, t, s)$ depends on i and j also and we have in the case $j=i+1$ and $t \geq s$

$$
\begin{aligned}
\int_{0}^{h} k(x, t, s) d x & =\int_{t}^{h}(x-t)^{n-i-2}(x-s)^{n-i-2}[(x-t)+x-s] d x \\
& =\int_{t}^{h} \frac{d}{d x}\left(\frac{[(x-t)(x-s)]^{n-i-1}}{n-i-1}\right) d x=\frac{[(h-t)(h-s)]^{n-i-1}}{n-i-1}
\end{aligned}
$$

By symmetry this formula also holds for $t \leq s$.
The integral on the right-hand side of (7) becomes

$$
\begin{equation*}
\frac{\left(\int_{0}^{h}(h-t)^{n-i-1}\left|f^{(n)}(t)\right| d t\right)^{2}}{(n-i-1)} \tag{8}
\end{equation*}
$$

We estimate this by Hölder's inequality to get an upper bound to (8)

$$
\begin{align*}
& \frac{\left(\int_{0}^{h}(h-t)^{(n-i-1) p^{\prime}} d t\right)^{2 / p^{\prime}}\left(\int_{0}^{h}\left|f^{(n)}(t)\right|^{p} d t\right)^{2 / p}}{(n-i-1)} \\
& \quad=\frac{h^{\left((n-i-1) p^{\prime}+1\right) 2 / p^{\prime}}}{(n-i-1)\left((n-i-1) p^{\prime}+1\right)^{2 / p^{\prime}}}\left(\int_{0}^{h}\left|f^{(n)}(t)\right|^{p} d t\right)^{2 / p} \tag{9}
\end{align*}
$$

We have equality if $\left|f_{(t)}^{(n)}\right|^{p}=(h-t)^{n-i-1) p^{\prime}}$ a.e. In particular we have the integral on the right-hand side of (7) equal to (9) when $f^{(n)}(t)=(h-t)^{(n-i-1) p^{\prime} / p}$. At the same time this gives equality in (7) as noted above. Furthermore, equality holds only if f is a multiple of one such extremal. The cases $p=1$ and ∞ need to be taken care of separately. For $p=\infty$ we easily get (2) by the obvious estimate of (8). For $p=1$ we take the factor in (2) that contains p^{\prime} to be 1 . Equality holds when $p=\infty$ when $f^{(n)}(t)=$ constant. For $p=1$ we of course never get equality. This completes the proof of (2).

The case when $j \neq 1+i$ differs from the above case in that $\int_{0}^{h} k(x, t, s) d x$ does not factor into a product of a power of $(1-t)$ and a power of $(1-s)$. We must be content to bound it with such a function. In preparation for this argument we offer a
Lemma. For $u \geq 0$ and $0 \leq i \leq j$

$$
\begin{equation*}
\int_{0}^{u}\left[w^{i}(1+w)^{j}+w^{i}(1+w)^{i}\right] d w \leq \frac{u^{i+1}(1+u)^{j}}{i+1} \tag{10}
\end{equation*}
$$

and the number $1 /(i+1)$ cannot be replaced by a smaller constant.
Proof. We write the right-hand side of (10) as

$$
\frac{1}{1+i} \int_{0}^{u} \frac{d}{d w}\left(w^{i+1}(1+w)^{j}\right) d w
$$

and find that this integrand dominates the integrand on the left of (10) as long as $j \geq i$ and $w \geq 0$. To show that the constant $1 /(1+i)$ cannot be replaced by a smaller one, one argues that

$$
\lim _{u \rightarrow 0^{+}} \frac{1}{u^{i+1}(1+u)^{j}} \int_{0}^{u}\left[w^{i}(1+w)^{j}+w^{j}(1+w)^{i}\right] d w=\frac{1}{1+i}
$$

prevents this.
We may now prove the remainder of the theorem.
Proof of (3). We begin with the inequality like (7) obtained from (5) and consider a bound on $\int_{0}^{h} k(x, t, s) d x$. In this integral we assume first that $x>t>s$ and make the change of variables $w=(x-t) /(t-s)$. By use of the lemma, we obtain

$$
\begin{aligned}
& \int_{0}^{h} k(x, t, s) d x \\
& \quad=(t-s)^{2 n-i-j-1} \int_{0}^{(h-t) /(t-s)}\left[w^{n-i-1}(1+w)^{n-j-1}+w^{n-j-1}(1+w)^{n-i-1}\right] d w \\
& \quad \leq \frac{(t-s)^{2 n-i-j-1}}{n-j}\left(\frac{h-t}{t-s}\right)^{n-j}\left(\frac{h-s}{t-s}\right)^{n-i-1}=\frac{(h-t)^{n-j}(h-s)^{n-i-1}}{n-j} .
\end{aligned}
$$

Recall that this is for $t>s$. By continuity the final estimate holds when $t=s$. By symmetry, we may estimate the integral for $s>t$.

The integral on the right of (7) can now be estimated by

$$
\begin{aligned}
& \frac{1}{n-j} \iint_{t \geq s}(h-t)^{n-j}(h-s)^{n-1-i}\left|f^{(n)}(t) \| f^{(n)}(s)\right| d t d s \\
&+\frac{1}{n-j} \iint_{t \leq s}(h-s)^{n-j}(h-t)^{n-i-1}\left|f^{(n)}(t) \| f^{(n)}(s)\right| d t d s \\
&= \frac{2}{n-j} \int_{0}^{h}(h-s)^{n-i-1}\left|f^{(n)}(s)\right|\left(\int_{s}^{h}(h-t)^{n-j}\left|f^{(n)}(t)\right| d t\right) d s \\
& \leq \frac{2}{n-j} \int_{0}^{h}(h-s)^{n-1-i}\left|f^{(n)}(s)\right|\left(\int_{s}^{h}(h-t)^{(n-j) p^{\prime}} d t\right)^{1 / p^{\prime}}\left(\int_{s}^{h}\left|f^{(n)}(t)\right|^{p} d t\right)^{1 / p} \\
&= \frac{2}{(n-j)\left[(n-j) p^{\prime}+1\right]^{1 / p^{\prime}}} \int_{0}^{h}(h-s)^{2 n-i-j-1 / p}\left|f^{(n)}(s)\right| \\
& \leq\left.\frac{2}{(n-j)\left[(n-j) p^{\prime}+1\right]^{1 / p^{\prime}}}\left(\int_{0}^{h}(h-s)^{(2 n-i-j-1 / p) p^{\prime}} d s\right)_{s}^{1 / p^{\prime}}\left|f^{(n)}(t)\right|^{p} d t\right)^{1 / p} d s \\
& \quad \times\left(\int_{0}^{h}\left|f^{(n)}(s)\right|^{p} \int_{s}^{h}\left|f^{(n)}(t)\right|^{p} d t d s\right)^{1 / p} \\
&= \frac{2 h^{2 n-i-j+1-2 / p}}{\left.(n-j)\left[(n-j) p^{\prime}+1\right]^{1 / p^{\prime}}(2 n-i-j-1) p^{\prime}+2\right]^{1 / p^{\prime}}} \\
& \times\left[\frac{1}{2}\left(\int_{0}^{h}\left|f^{(n)}(t)\right|^{p} d t\right)^{2}\right]^{1 / p} \quad .
\end{aligned}
$$

This gives the final result for $1<p<\infty$. One can easily check that for $p=1$ or ∞ the result is also valid.

A related result is given by Fitzgerald [1], who considers the inequality (1) for the case $i=0, j=1, p=2$ with the boundary conditions that f has an n-fold zero at both 0 and h. He gets the extremal to be a piecewise polynomial and is able to compute the constant explicit for small n. For $n=2$ he gets $\frac{1}{192}$ while we have the best possible constant $\frac{1}{6}$. The case $j=i+1$ has an easy proof as mentioned above. For if f is given, let

$$
g(x)=\frac{1}{(n-1)!} \int_{0}^{x}(x-t)^{n-1}\left|f^{(n)}(t)\right| d t
$$

Then $g^{(i)}(x) \geq 0$ for all i and $\left|f^{(i)}(t)\right| \leq g^{i}(x)$ for all i and x, with $\left|f^{(n)}(x)\right|=g^{(n)}(x)$.

Then

$$
\begin{aligned}
\int_{0}^{h}\left|f^{(i)}(x) f^{(i+1)}(x)\right| d x & \leq \int_{0}^{h} g^{(i)}(x) g^{(i+1)}(x) d x \\
& =\frac{\left(g^{(i)}(h)\right)^{2}}{2}=\frac{1}{2}\left(\int_{0}^{h} \frac{(h-t)^{n-i}}{(n-i)!}\left|f^{(n)}(t)\right| d t\right)^{2}
\end{aligned}
$$

and one applies Hölder's inequality as in the first proof.

References

1. C. H. Fitzgerald, Opial-type inequalities that involve higher order derivatives, General Inequalities, 4th ed., W. Walter, Basel, 1984, pp. 25-36.
2. D. S. Mitrinović, Analytic inequalities, Springer-Verlag, New York, 1970.
3. D. S. Mitrinović, J. T. Pečarić, and A. M. Fink, Inequalities for functions involving their integrals and derivatives, Kluwer, Dordrecht, 1991.
4. Z. Opial, Sur une inégalité, Ann. Polon. Math. 8 (1960), 29-32.

Department of Mathematics, Iowa State University, Ames, Iowa 50011

