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ON OPIAL'S INEQUALITY FOR /<")

A. M. FINK

(Communicated by Andrew M. Bruckner)

Abstract. We prove inequalities of the type

\Vp
j  \f{i)(x)fu)(x)\dx< C(n, i, j, p)^"-'-^1-2'" ( j   \f(n)(x)\i>dx]

when /(0) = /'(0) = ■•■ = /("-"(O) = 0. We assume that /<"-') is

absolutely continuous and /("> 6 Lp(0, h), with p > 1 , n > 2 , and 0 < i <

j < n - 1 .

Opial's inequality is J¡ \f(x)f'(x)\dx < $J0hf'(x)2dx when /(0) = /(«)
= 0. Shortly after this result was published it was realized that the inequality

followed from two applications of the inequality

J  \f(x)f'(x)\dx<^l f'(x)2dx

when f(0) = 0. Various generalizations of this result have been given, see
Mitrinovic [2] or Mitrinovic, Pecaric, and Fink [3]. Here we look at the in-

equality

(1)

/ \f{i)(x)f(i)(x)\dx< C(n, i, j, p)h2n-i-j+x-2l" ( Í \f^(x)\pdx)

when /(0) = /'(0) = • • • = /("-''(O) = 0. We assume that /("-« is absolutely

continuous and /("' e Lp(0, h), and p > 1, « > 2, and 0<i<j<n-l.

We begin with the statement of the

Theorem. Let f have (n - 1) continuous derivatives and assume that /'"_1)

is absolutely continuous and /("> e Lp(0, h). Let f have an n-fold zero at 0.

Then inequality (1) holds with best possible constants C(n, i, j, p) given by

(2) C(«,/,/+l,p)=2(A;_._1)!2[(w1_._1);;/ + 1]2/p,

for i = 0,...,«- 2, while
9-l/p

(3) C(n,i,j,p)<
(n-i- \)\(n - j)\[(n - j)p> + 1]'/p'[(2« - / - j - \)p> + 2]Up'
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for 0<i<j<n-l. Equality holds in ( 1 ) if

fix) = t^T)T jf (* - O'-'C* - t)ln-f-1*" dt,       p > 1.

The proof of this theorem is based on the representation

(4) f(x) = ̂ 4i)! jf (* - 0"-7w(0 <* = (^Tji jf (* - 0r7w(0 dt,

where x+ = max(0, x). We will give two proofs of (2), the first because it gives

a guide to the proof of (3). The second is given at the end of the paper and is

simpler.

Using (4) we can easily derive

f{i)(x)f(i)(x)
(n-l-i)\(n-l-j)\

h    rh

X /   / f{n)(t)f{n)(s)[(x - ^-'(x -s)"+-l-j]dtds.
Jo Jo

rh    rh

We prefer to symmetrize this to get

(5)

/«<*)/">(*) = 2(w_1_f)i(B_1_7.)!f<(V^(0/wWA:(x, t,s)dsdt,

where

(6)      k(x,t,s) = (x- t)"+-l-'(x -s)n+-l~j + (x-s)J-1_'(JC - O"-1-"' •

Proof of (2). We use relation (5) to get

fH \fl,)(x)fii+l)(x)\dx

(7)

^2(H-l-0!(H-i-2)l/o7'l/W(OII/(")(JKr*('-f-J)A)<**-

We note that equality holds if /(n) is of constant sign since this implies that

/(0/(«+i) > 0 and A: > 0. Now the kernel fc(x, t, s) depends on i and j

also and we have in the case j = i + I and / > 5

/•« pfl

I   k(x,t,s)dx=  /  (x-0"_'-2(-x-í)""'_2[(x-0 + ^-5]í¿c
./o Jt

h   A    /rív _ t\lv _ oM«-'-l \ [(« — í)(^ — 5)]"-'1=   /« rf  /r[(x-0(jc-j)]"-'-'\d!c =
Jt   dx \ n-i-l ) n - i - 1

By symmetry this formula also holds for t < s.

The integral on the right-hand side of (7) becomes

(8> *-<^T)-
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We estimate this by Holder's inequality to get an upper bound to (8)

(Jo (* - O'"-'-1*' dtf (f¡ \P*Ht)\p dt)2*
(9) (n-i-l)

n((n-i-l)p' + \)2/p' /   rh ^     \2/p

= (n - i - l)((n - i - l)p'+ 1)2/p' [Jo  lf " {t)l" dt)      ■

We have equality if \f(n\t)\p = (h- t)n~'~x')p' a.e. In particular we have the inte-

gral on the right-hand side of (7) equal to (9) when f(n)(t) = (h- ?)("-<-1)/>7/>.
At the same time this gives equality in (7) as noted above. Furthermore, equal-

ity holds only if / is a multiple of one such extremal. The cases p = 1 and oo

need to be taken care of separately. For p = oo we easily get (2) by the obvious

estimate of (8). For p = 1 we take the factor in (2) that contains p' to be 1.

Equality holds when p = oo when f^n\t) — constant. For p = 1 we of course

never get equality. This completes the proof of (2).

The case when j ^ I + i differs from the above case in that /0 k(x, t, s) dx

does not factor into a product of a power of (1 - t) and a power of (1 - 5).

We must be content to bound it with such a function. In preparation for this

argument we offer a

Lemma. For u > 0 and 0 < i < j

/*" W'+'d-r-wV
(10) [w'(l + w)J+w'(l+w)']dw<- ■    ,       ,

Jo l + l

and the number l/(i + 1) cannot be replaced by a smaller constant.

Proof. We write the right-hand side of ( 10) as

—U /  4-(wi+x(l+w)J)dw
1 + 1 Jo  dwy

and find that this integrand dominates the integrand on the left of (10) as long

as j > i and w > 0. To show that the constant 1/(1 + /) cannot be replaced

by a smaller one, one argues that

If". 1
lim    ,.,...-r-r /   [w'(l + w)J +wJ(l +w)']dw =-:

prevents this.

We may now prove the remainder of the theorem.

Proof of (3). We begin with the inequality like (7) obtained from (5) and con-

sider a bound on /0 k(x, t, s) dx. In this integral we assume first that x > t > s

and make the change of variables w = (x - t)/(t - s). By use of the lemma,

we obtain

/   k(x, t, s)dx
Jo

r(h-t)/(t-s)

= (í-j)2"-''-;-1 / [^"-'-'(1 +w)"-j-x +w"-j-x(l +w)"-'-x]dw
Jo

(f-j)2"-'-;-1 fh-t\"-j fh-sy-''1 _ (h-ty-^h-s)"-'-1

n-j \t-sj       \t — sj n-j
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Recall that this is for t > s.  By continuity the final estimate holds when

t = s. By symmetry, we may estimate the integral for s > t.

The integral on the right of (7) can now be estimated by

—— ff   (h - t)"-J(h -sy-t-'lfWWWfWWdtds
n — J J Jt>s

+ -!—. if   (h-s)n-j(h-t)n-l-x\fw(t)\\fW(s)\dtds
n — J J Jt<s

= -^rjj\h-s)"~i~y\f{n)^)\ (j\h-ty-j\f^(t)\dt\ ds

J rh (   th \X/P' (   rh

* -¿ZTj l   ̂  - »y,"l"'l/")(*)l U    (ft - t)in-J)P' dt\ U     \f(n)(t)\p

-_ /  (h-s)2"~'~j~x/p\f(-n](s)\
(n-j)[(n-j)p'+l]x/p'Jo{n    S) U    [S)l

x (J  \f{n)(t)\pdt\      ds

i/p
dt

<_-_ ( Í (h- s){2n~'-
-(n-j)[(n-j)p'+l}W [Jo {        j

X [[ \f(n)^\P [ \f{n)^\P dtA

W
■j-i/P)p'ds

2n2n-i-j+l-2/p

(n - J)[(n - J)P' + l]xlpl(2n - i - j - l)p'+ 2]xIp'

1
/ l/(B)(0lp

Jo
dt

i/p

This gives the final result for 1 < p < oo. One can easily check that for p = 1

or oo the result is also valid.

A related result is given by Fitzgerald [1], who considers the inequality (1)

for the case i = 0, j: = 1, p = 2 with the boundary conditions that / has an

«-fold zero at both 0 and « . He gets the extremal to be a piecewise polynomial

and is able to compute the constant explicit for small « . For « = 2 he gets

TÇ2 while we have the best possible constant g . The case / = / -f-1 has an easy

proof as mentioned above. For if / is given, let

g(x) = -^rTyJoX(x-ty-x\fW(t)\ dt.

Then  g^(x) > 0  for all  i  and  |/(,)(0I < g'(x)  for all  i  and x, with

|/C)(X)| = gW(x).
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Then

rh

[  \f{i)(x)f(i+X)(x)\dx<  [ gW(x)gV+»(x)dx
Jo Jo

=^4(1'^"*) •
and one applies Holder's inequality as in the first proof.
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