PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 115, Number 2, June 1992
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ABSTRACT. Bor (1985, 1986) gave a relation between the two summability meth-
ods |C, 1| and |N, pn|; of aseries 3 an . These two methods are known to
be independent. Generalizing the case, here we introduce relations between the
two summability methods |C, al; and |N, pa|, using multipliers sequence

{en}.

1. INTRODUCTION

Let ¥ a, be an infinite series of partial sums s,. Let g and 5} denote
the nth Cesaro mean of order (6 > —1) of the sequences {s,} and {na,}
respectively. The series Y a, is said to be absolutely summable (C, J) with
index k, or simply summable |C, d|,, k> 1, if

oo
Zn""kf,‘f —0?_,|F < 0,
n=1

or equivalently,
o0
d_on7 < co.

n=1
Let {p,} be a sequence of positive real constants such that

n
P,=) p,—o0 asn—oo(P.y=p=0).

v=0
A series Y a, is said to be summable [N, Dulic, k> 1,if
S (2) 1= Tkt <o0 Bormy,
— \Dn
n=1
where .
T == Pn_l vaSv .
v=0
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If we take p, = 1, then |N, p,|;, summability is equivalent to |C, 1|, summa-
bility. |N, p,|; is the same as |N, p,|. In general the two methods |C, J|,
and |N, p,|r are not comparable.

Bor established the following two results:

Theorem A. Let {p,} be a sequence of positive real constants such that as n —
oo

(1) hpn = O(Pn) s
(0 {(ii) P, = O(np,).

If S a, is summable |C, 1|, then it is summable |N, pyli, k> 1.

Theorem B. Let {p,} be a sequence of positive real constants such that it satisfies
(I). If Y- a, is summable |N, py|y , then it is summable |C, 1|, k> 1.

2. MAIN RESULTS
We prove the following:

Theorem 1. (A) Let {pn} be a sequence of positive numbers. Let T, be the
(N, pn)-mean of the series > a,. If

oo

(2.1) > nk e [FIAT,_y * < oo,
n=1
o) k
(2.2) > nkkest (ﬂ) lenF|AT,_1|¥ <00, (0<a<]l)
el Dn
oo k
ey Lo (2) planiat <o @21
n=1 n
oo k
(2.4) > nk! (fﬁ) |Aen|K|AT,_|F < o0,
Dn

n=1

then the series _ ane, is summable |C,aly, k>1, a>0.

(B) Let {pn} be a sequence of positive numbers such that (1) holds. Let
{An}, {€n} be such that {A,} is nonnegative, nondecreasing, n'=*i,e,| = O(1)
Jor 0<a< 1, Aple,| = O(1) and €, = 0(1) for a > 1, Ae, = O(n~'e,|), and

m P, k—1
> (—") AT, _i|* = 0(ik), m—-

n=1 n

then in order to have the series ) a,&, summable |C, ol , it is sufficient that

> 1P A|A%,| < oo, O<a<l)

n=1

and

o0
D nin|A%,| < oo,  (a21).

n=1
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Theorem 2. (A) Let {p,} be a sequence of positive numbers. Let t. be the nth
(C, 1)-mean of the sequence {na,}. If

o0
(2.5) 2 leallalk < oo,
n=1 n
00 k—1
1 (P
(2.6) Yo (—) leal¥|2L]% < o0,
n=1 h Pn
0o P k—1
(2.7) 3 (p—”) |Aen[*|2,]* < o0,
n

then the series Y ane, is summable |N, puli, k> 1.

(B) Let {p.} be a sequence of positive numbers such that (1) holds. Let
{An}, {€n} be such that {A,} is nonnegative, nondecreasing, A,le,| = O(1),
en=0(1), Ae, = O(n~'e,]|), and

m
S on7lnlk =0k,
n=1

then in order to have the series S ane, summable |N, ppli, k > 1, it is suffi-
cient that

oo
> nan|A%e,| < .
n=1

3. REQUIRED LEMMA
Lemma. If ¢ >0 >0, then

m -1
n—-v

Z (n-v)™ _ oW, asm— .

nd
n=v+1

4. PROOF OF THE THEOREMS

Proof of Theorem 1. (A) Let t& be the nth (C, a)-mean, a > 0, of the se-
quence {na,e,}. Then we have

| SR
= > AT vaye,,
noy=1
where
s_(n+d6) _(6+1D)@G+2)---(6+n)  n’ L
A"_( n )_ n! “T+1)’ o# -1,
As n
vazar——z Pv l)av,
v=0 r=0 " y=0
then

Tn“Tn—l—P IZPU 14y .
n P
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1 n
=—az -1y VAT P 8y}
n —

[nil {ZP_la,}A{vA Pv__llav}"' {iP’_lar}nP lenl

v=1 \r=1 r=1

=—— E VA e, AT, ) + 2= A e, ATy + (v + 1 b
A‘,} L=1 v v—1 Do v v—1 ( ) Do

x AAST) e, AT,

Py,

+ (v + 1)=2=L go] AstTv_l} + nﬂs,,AT,,_ll
Py Pn

n—v—1
St oty s+t o+t s,

In order to prove the theorem, by Minkowski’s inequality, it is sufficient to
show that

o0
Sonle f<oo, r=1,2,3,4,5.

Applying Hoélder’s inequality, we have
k=1

m+1 m+1 n—lAa_1
DBLUNIEDD AaZv"A‘* el AT, - nk{ ——;;;”}
n=2 n

v=1

m m+1 Aa_l
l)zvklsvlklATv—llk Z ﬁ
n

v=1 n=v+1
m+1 a—1
n-—-v
- o Y. vk aT, Y
v=1 n=v+1
m

1) vk e, AT, 5.

m+1 mil o=l k = | ga-1 k=1
—lj4a [k v a—1 k “n—v
S it <535 (2 mtar o {0

v=1

m P k m+1 Aa_l
—oY. (2 japiar ik 3 S

n=v+l1

<

m P, k
—o(1)y v (p—) lea[HIAT, i

v
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m+1 m+1 n

P,
—0<1>Zjv" ‘(pv) (A2, AT, _y .

m m
zn—lvﬁ,slk_ an —ka— l(p_) |6n|k|ATn 1|k
n=1 n

n=1

For 1 3 the two cases 0 < a < 1, and o > 1 need to be considered. For
0<a<1, wehave

m+1 m+1

RURIEDS A)kaH # (%) Iatsteia
n=2

{MA}n

m+1 -1
=01, 1+kazvk( ) (n —v)*?|ey|“|AT, -1 *
n=2 v=1
n—1 k-1
x {Z(n —'U)”‘_z}
v=1
k

—0(1>Zv ( ) el FAT_y ¢
m+1 _
(n__v)a 2
X Z nl+ka

n=v+1

m P, k
1)y pkket (—) leolIAT, 1 .
el Dy

When o =1, A42Z} = 0, hence ty 3 =0. It remains to consider #; ; for
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a > 1, and for this case we have

m+1 m+1 k k
_ X K a2 |&u]“|ATy—i]
Z" e sl = O(1) Znukazv < ) n—v) Tt e Ey
n—1
(as Z(n -0)*"2=0(1) / (n—x)*"2dx = 0(n"“).>
1

m P k
=0 v* (p:) el ATy

This completes the proof of (A). To prove (B), by (A), it is sufficient to show
that the conditions (2.1)-(2.4) are all satisfied. Since Ae, = O(n~!|e,|), then
by (I) each of the summations in (2.1) and (2.4) is equal to

i:j (2 ) lealFIAT, i

omznk ~ka- '(ﬁ) eaAT, [ (O <a< 1),

1)2;1-l (p—”) lenKIAT o1k, (@>1).
n=1 n

Therefore, only the two conditions (2.2) and (2.3) are left to be considered.
For 0 < a <1, we have

m P k
ka—ka—l (_U) |8v|k|ATv—l|k
Dy

v=1

dd P,
0y v~+ele, (22 ) AT, ¢
v=1
m—1 v
ZZ( ) AT,y {0k gy € + (0 + 1Az, [5)
v=1 r=1
oy (;) AT,y [ - ke,
r=1 r

=L +I,+1;, say.
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vk—ka—llﬁlsvlk = 0(1) Z'U_alvlgvl

v=1

= 0(1)

NE

<
Il
—

i Ae,

=0(1)) v4, , asem=0(1)=0(1)> v Y _ |Ag|
v=1 r=v v=1 r=v
o1 Z|As,|2v-a,1,, = O(I)ZlAs,M,/ x%dx
=0(1)) _r'=A|Ae| = O(1) Y r'=a, Z|A28,| as Ae,, = o(1)
=1 r=1

8

Z A, |Zr' “Ar

= 0(1) S w24, |A%,].
v

=1

8||

Since
Aley|* = K(lew| — levsr|)EFT,

for some ¢ between |g,| and |¢,41|, by the mean value theorem,
Aley[* = O{le,|*'Aley}, as &m = 0(1)
= O{le,|* " |Aey |},
therefore,

L=0(1)) vk ke akAle, |*

v=1

= 0(1) ) vk kAl [~ Aey |

v=1
=0(1) > _v'"*4|Aey| = 0(1)21:1 2 Z|A2£,|
v=1 r=v
=0(1) > r=i,|A%,|
r=1

= O(1)ymk=kazk e[ = O(1).

Now, for the case a > 1 we have

Zv—]< ) lsvlklATv llk
P, k-1
- o(1) Z eut (22) IAT,al

’U

m—1 v m k-1
-0<1)22( ) ATl + 0 Y (2) 18T Hlenlt
v=1 r=1 r=1 Pr

=J,+J,, say.




310 W. T. SULAIMAN

=0(1) > Atley[*!|Aey| = O(1) ) Ay |Ac, |
v=1

v=1

=0(1) Z VAo|A%ey |y |A%e,|,  as before.
J=0(1 ’fnlsml" o(1).
This completes the proof of Theorem 1.

Proof of Theorem 2. (A) Let Q, denote the (N, p,)-mean of the series 3" a,ép .
Then we have

1 & v 1 &
= ‘P‘ va Zarar = FZ(Pn - Py_1)ayey
"v=0 r=0 n

Qn_Qn—l—PPn IZP’U 1Qv€y -

'u 1811
On—Qn1 = P Pn 1 zvav

n 1) _Pvév Py P,Aeg,
—1 [Z(v-'-l)t”{ v +'v(v+1)+v+l

n+1
+ Pn_lﬁnt;]

= Qn,l +Qn,2+Qn,3+Qn,4-

In order to prove the theorem it is sufficient, by Minkowski’s inequality, to
show that

oo P, k—1
Z(-’l> |Qn. ¥ <00, r=1,2,3,4.

o1 \Pn

Applying Holder’s inequality, we have

1 k—1
Dy
<)

m+1 P, k-1 k m+1 = k - n—

n

S (2) ot < 355 (144) et {54

n=2 v=1 v=1
m+1

_0(1 Z Ig’vlkit Ik PP

n=v+1

;l Dy
O3 eIt

1
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k-1
—l}

m+1 k-1 m+1 n—1 k n—1

P, k Dn 1 (Pv) ki.11k Dy
E —_ < E — | — t E
~ <pn> . |Qn,2| —_ PnPn—l ’Uk pv pv|8v| | vl = Pn

m 1 P k m+1
=0())_ o) poleolll Z PP

2 (5) poetiar 3
(&)

m 1 Pv k—1 -
=o)Y z(57)  laliml.
v=1 v
’f‘:l (P )k—] X m+1 p i P L nz_:] p k-1
n v
5) 10l < (—) poldey Fel| { }
n=2 Pn n=2 P"P v=1 p v=1 p -1
m k m+1 )
=01y (—) PolAgy [¥|1) | o
v=1 Py n=v+1 P"Pn_l
m Pv k—1 . p
=0<1)2(p—) ey <] E
v

m k—1
S () 10t =0m 3 Bt

n=1
The proof of (B) can be achieved exactly as in the case of Theorem 1. This
completes the proof of Theorem 2.

5. APPLICATIONS AND COROLLARIES

1. If we take a = 1 and ¢, = 1 for all n in Theorem 1 (A), we get
Theorem B provided (I) holds.
2. If we take @« = 1 and ¢, = 1 for all n in Theorem 2 (A), we get
Theorem A provided (I) holds.
Corollary 1. Let {p,} be a sequence of positive real constants such that np, =
O(P,). Then sufficient conditions that > a,e, be summable |C, a|., k > 1,
a >0, whenever S a, is summable |N, p,|; are
(1) lenl = O{na_l“/k(pn/Pn)l/k} (a<l),
(i) lenl = O{(npa/P)' ¥} (a21),
(iii) |Aen| = O{n—Hl/k(Pn/Pn)l/k} .
Proof. Since np, = O(P,), then, for 0 <a< 1,

00 ) P k P k—1
St laTua = o) St (B) () AT,
n

n=1 n=1 n

) P, k—1
=0(1) ) nkek (—") AT, [
P Dn

0o k—1
-0y () il = on).

Similarly, we can show that (2.2)—(2.4) are also satisfied, and the result follows
by Theorem 1 (A).
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Corollary 2. Let {p,} be a sequence of positive real constants such that np, =
O(P,). Then sufficient conditions that > a,e, be summable |N, pyli, k > 1,
whenever Y a, is summable |C, 1|, are

(1) len] = 0{(”pn/Pn)‘_l/k},
(i) |Aes| = O{n=1k(p,/Py)' =1k}

Proof. Since np, = O(P,), then |¢,| = O(1). Hence
- Pny ki ik — S Lok
> g lenl Il = 0D 32 il = 0(1).

Conditions (2.6) and (2.7) are also satisfied, and the result follows by Theorem
2 (A).
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