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Abstract. For any integer n > 2, denote by R„ the class of groups G in

which every infinite subset X contains n elements X\, ... , xn such that the

product X[ ■ ■ ■ xn = xCT(|) • • • jcff(B) for some permutation a ^ 1. The case

« = 2 was studied by B. H. Neumann who proved that Rj is precisely the

class of centre-by-finite groups. Here we show that G £ R„ for some n if and

only if G contains an FC-subgroup F of finite index such that the exponent

of F/Z(F) is finite, where Z(F) denotes the centre of F .

Introduction

B. H. Neumann proved in [8] that a group is centre-by-finite if and only if ev-

ery infinite subset contains a pair of elements that commute. Extensions of prob-

lems of this type are to be found in [7] and [6]. The notion of commutativity

was extended to rewritable products in [4] with a complete description obtained

in [5]. Detailed study of rewritable groups may be found in papers by R. Blyth

[1] and [2]. Following earlier authors, we call G a TVgroup if given any se-

quence xx, ... , xn of n elements in G, their product xi • • • x„ = xa^ ■ ■ ■ xa^

for some permutation rr ^ 1. A group G is called a Qn group if given

any set {x\,...,xn} of aa elements of G, xarx) ■ ■•xa(„-) = x^x) ■ ■ ■ x^„) for

some permutations  o ^ <p.  Clearly P„ Ç Q„  and Blyth [1] has shown that

UHPn = \JnQ».
Call G an R„ group if every infinite subset X of G contains a subset

{xx, ... , x„} of aa elements such that xx ■ ■ ■ x„ - xa(x) • ■ ■ xa(n) for some per-

mutation a ^ 1. Clearly Qn Ç R„ for every aa. The relation of R„ to Qn is

rather like that of centre-by-finite groups to abelian groups. Our main result is

the following.

Theorem A. A group G is an R„ group for some integer n if and only if G

has a normal subgroup F suchthat G/F is finite, F is an FC-group and the

exponent of F/Z(F) is finite.
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Recall that a group G is an FC-group if every element of G has only finitely

many conjugates in G. For results on FC-groups we refer the reader to [9].

Proofs

Groups G in which, given any infinite sequence Xx, x2, ... of elements in

G, there exist some m £ IN and permutations o / cp in Sm such that

•*<x(l) ' ' ' Xo{m) ~ x<t>(\) ' ' ' x<t>(m)

were studied in [3]. The class Qx of all such groups was shown to be precisely

the class of FC-by-finite groups. Our first lemma makes use of this.

Lemma 1. If G £ R„ for some n then G is FC-by-finite.

Proof. Let G £ Rn and let Xx, x2, ... be any infinite sequence. Let X =

{x¡; i = 1, 2, ...}. It contains n elements, say x^ , ... , Xin such that their

product is rewritable. Let k — max{A, ; i — I, ... , n}. Consider the sequence

xx, ... , xx. Reorder the sequence as yq , ... , yi where y¡ = Xx¡, i = I, ... , n
and the rest of the y,'s are the rest of jr/s in some order.

Now yx ■■■yn= ya(\)---y<j(n) for some o # 1. Hence yx ■■-y„y„+x ■■-y¿ =

ya(i) ■ ■ ■ ya(n)}'n+i "'W and so G £ goo- Thus by Proposition 2 of [3], G is

FC-by-finite.

Lemma 2. Let F be a normal subgroup of a group G suchthat G/F is finite

of exponent e, G/Z(F) is of finite exponent e' and F is an FC-group. Then

G £ Re+e' ■

Proof. Since every finite group is in Rn for every n > 2, we may assume that

G is not finite. Let X be any infinite set in G. Then \Fg n X\ — oo for some

g £ G. Thus we may as well assume that X ç Fg. Pick any X\,... ,xe from

X. Their product Xx ■ --xe — f lies in F. Let X' = X\{xx, ... , xe}. Since F

is an FC-group and f£F, the centralizer C of (fG) in F is of finite index

in G; also C 3 Z(F). Now 1^' n Ch\ — oo for some h in G so pick any e'

elements Cxh, ... , ce>h from X' n Caa. Then

f(cxh) ■ ■ ■ (ce,h) m (ah) •• ■ (ce.h)fhe' =(cxh)--- (ce,h)f

for he' £ Z(F). Since / is a product of e elements of X, G £ Re+e'-

The above lemma provides the easy half of the proof of Theorem A. For the

other half we need the following preliminary results.

Lemma 3. Let G be an FC group that is also nilpotent of class two. Then

G £ Rn for some aa > 2 implies G/Z(G) has finite exponent.

Proof. Suppose not. Then there exist ax, bx in G such that [b[, ax] — c[ / 1

for all i = 1, ... , aa. Clearly if we set G = G/(cx), the exponent of the group

G/Z(G) is not finite, for G is an FC-group so that (c\) is finite. Next choose

b2, Ü2 in Cg(ax, b\) such that [b2, a2] = c2 $ (ex) for all a = 1, ... , aa. This

is possible since Cg(öi , bx) is of finite index in G.

Continue; at step k, pick bk , Ok in Cn(ax, ... , ak-x, bx, ... , bk-x) such

that [b'k, ük] = c'k does not lie in (ex , ... , Ck-x) for all I < i < n. Now put

Xn = bx and Xk — ax ...ükbk+x for k > 0. Take X = {x, ; i > 0}. We claim
that if X\,... ,X„  are any n distinct nonnegative integers, then xx¡ •••Xx, =

*w--*;u, imPlies a = x-
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For each kj let r(kj) denote the number of x^'s with A, > kj appearing to

the right of x¿ in the expression x¿, ■ ■ -Xx„. Let s(kj) denote the number of

x^'s with k¡ > kj appearing to the right of x%. in the expression x¿ • • -Xx,...

Let kj be the largest integer such that r = r(kj) / s(kj) = s. Then modulo

(ex, ... , cX]),

(xXl...xx„)(xxa(l)...x^)-1 = bkarka-sb¡:xask-r = crk~s,

where k = kj + I.
Since 1 < |jf-r| < aa, csk~r i (c{, ... ,icXj) and hence xv--xA„ = x^- ■ -x^

only if r(kj) = s(kj) for all ;'. But this implies that a = 1 and thus completes

the proof.

Lemma 4. Let G bean FC-group such that the exponent of G /Ç2(G) is finite.

If G £ Rn for some n > 2, then the exponent of G/Çx(G) is finite. (d(G)

denotes the ith centre of G).

Proof. Write Z, for £,((/). By Lemma 3, the exponent of Z2/Cx{Z2) is finite.

Put A = Cx(Z2).
It will suffice to show that the exponent of A/Zx is finite. Let e be the

exponent of G/Z2 and suppose there is a £ A such that ae fi Zj. Then

[ae ,b]fl for some b £ G. But [ae, b] = [a, b]e = [a, be] £ [A, Z2] = 1, a

contradiction.

Proof of Theorem A. Let G £ R„ for some aa > 2. By Lemma 1, the FC-centre

F of G is of finite index in G. Because of Lemma 2, we only need to show

that F/Z(F) has finite exponent to complete the proof. If F is finite, there is

nothing to prove, so we may assume \F\ = 00. If F/Ç2(F) has finite exponent,

then Lemma 4 applies and we are done.

If F/t,2(F) is not of finite exponent then consider the group F = F/Z(F)

and get a contradiction by showing that the exponent of F/Z(F) is finite. The

purpose of considering F/Z(F) is that it is residually finite (see Theorem 1.9

of [9]). So we assume that F is a residually finite FC-group in the class

R„ for some aa > 2 and that the exponent of F/Z(F) is not finite. Then

there exist ax, bx in F such that [a\, bx] # 1 for all i — 1, 2, ... , n. Let

Ax = ([a{, bx]F). Note that Ax is finite. Let Ci = CF((ax, bx)F) so that G
is of finite index in F and there exists TV] « G such that TVi < G , M n

Ax = 1 and F/Nx is finite. Note that N\/Z(Nx) is not of finite exponent

for F = (TVi, Yx) for some finite set Yx and Cf(Yx) has finite index so that

CF(Yx)nZ(Nx)<Z(F) is of finite index in Z(7v,) and hence F/Z(F) would
have finite exponent.

Next choose a2, b2 in Nx such that [a2, b2] / 1 for all 0 < i < n. Obtain

subgroup N2<F such that N2 < N{ n CF((a2, b2)F), N2 n ([a2, b2]F) = 1,

and F/A2 is finite. This is possible and N2 is obtained in a similar way to TVi.

Also note that the exponent of N2/Z(N2) is not finite.

Continue the above process to get the sequence «3, b^, at,, ¿4 • ■ • . Now put

Xo = bx, Xx = axb2, ... , Xk = ax--- akbk+x, ■■■ and let X = {x,, i > 0}. We
claim that if k\,... , X„ are any n distinct nonnegative integers and

Xx¡ ■ ■ ■ Xx„ = Xxam • • ■ Xxa{n)

then fj = l. This is done by using an argument similar to that in Lemma 3.

This completes the proof.
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