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Abstract. Applying a property concerning certain coverings of lg°(X,s/)

that always contain some elements that are barrelled and dense in Iq°(X , sf),

we generalize a localization theorem of M. Valdivia, relative to vector bounded

finitely additive measures (Theorem 1), and obtain two different generalizations

of a theorem of J. Diestel and B. Faires ensuring that certain finitely additive

measures are countably additive (Theorems 2 and 3).

The original proof of the quoted theorem of Diestel and Faires uses a theo-

rem of Rosenthal that is not required in our proof of Theorem 3. This avoids

imposing over the Valdivia's Ar-spaces defining the measure range space, the

condition that they do not contain a copy of /°° .

Introduction

From now onwards the word "space" will mean "locally convex Hausdorff

space over the field K of the real or complex numbers." We set sé to denote a

a-algebra of subsets of a set X and represent by e(A) the characteristic func-

tion of the subset A of X. Let Iq°(X , sé) be the linear space generated by the

family {e(A), A e sé} endowed with the topology defined by the supremum

norm. As usual, we shall identify the space B(sé) of the bounded finitely addi-

tive scalar measures on sé with the topological dual of the space Iq°(X , sé),

and the subspace of the countably additive scalar measures will be denoted by

M(sé).
A space E is dual locally complete [6] if E'(o(E', E)) is locally complete.

A space E is Yr [8] ( Ar, [6]) if given any quasi-complete (locally complete)

subspace G of E*(o(E*, E)) such that G meets E' in a dense subspace

of E'(o(E', E)), G contains E'. 7?r-complete spaces are Yr, and reflexive

Banach spaces and Fréchet-Schwartz spaces provide some simple examples of

Ar-spaces. For simplicity we introduce the following definition.

Definition. Given any positive integer p , a countable family of subspaces W -

{Lmxm1...ms,  mr e N,   l<r<s<p}ofa linear space  L  is a p-net in
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L if the sequence {Lm, mx e N} is increasing and covers L and for each

se{2, ... ,p}, {Lmi,„m¡_¡ms, mseN} is increasing and covers 7m,m2...mj_, .

We shall denote by Wp the family {Lm¡m2_mp, m, e N, I < i < p}. In

[3, Theorem 1] we have shown that if W is a p-net in Iq°(X ,sé), then there

exists some Lmxmi_m¡¡ that is a dense and barrelled subspace of l^(X, sé).

This result fox p = I has been obtained by M. Valdivia in [7, Theorem 1]

showing that lQ°(X,¿é) is suprabarrelled.

From the suprabarrelledness of /q° (X, sé ), the following two results have

been derived.
(a) Let ^ be a bounded additive measure from a tr-algebra sé on X into

a space E. Let {Fn, n = 1,2,...} be an increasing sequence of rr-spaces

covering a space F . If /: E —> F is a linear mapping with closed graph, there

is a positive integer q such that fp is a Fq -valued bounded finite additive

measure on sé [7, Theorem 4].

(b) Let p be a finitely additive measure on sé with values in E, and let 77

be a er (7s', E) total subset of E' such that up is a countably additive measure

for each ueH. If E is a countable inductive limit of 7ir-complete spaces that

do not contain l°° , then p is a countable additive measure [5, 9.4, p. 367].

This last result extends a well-known theorem of J. Diestel and B. Faires [1,

Theorem 1.1].
Our previously quoted result of [3] enables us to generalize results (a) and

(b) in Theorems 1 and 2 below. Besides, Theorem 2 has suggested to us a new

generalization of the Diestel-Faires theorem, avoiding the condition that the

range spaces do not contain a copy of /°° .

Results

Theorem 1. Let p be a bounded additive measure on sé with values in a space

E. Suppose that F is a space with a p-net W such that each L eWp has a

locally convex topology E7~l stronger than that induced by F, under which L(¡JY)

isa Yf-space. If f is a linear mapping from E into F with closed graph, then

there exists a G eWp such that fp is a G(^a)-valued bounded finitely additive

measure.

Proof. As p is bounded, the mapping S: ¡^(X, sé) —> E, such that S(e(A)) =
p(A) for every A ese , is continuous, and therefore the linear map 7 = fS has

closed graph. By [3, Theorem 1], there is some G eWp such that 77 = T~X(G)

is dense in l^(X,sé) and barrelled.

According to Theorems 1 and 14 of [8], the restriction of 7 to 77 admits

a continuous extension U in l^(X, sé) with values in G. As 7 has closed

graph, T = U .

Theorem 2. Let p be a finitely additive measure on sé with values in a space

E, and let H be a o(E', E)-total subset of E'. Suppose that E has a p-net

W such that in each L e Wp there exists a locally convex topology ^l finer
than that induced by E, under which L(¡7f) is a sequentially complete Yr-space

not containing any copy of l°° . If up is a countably additive measure for each

u e 77, then there exists a G eWp such that p is a G(^a)-valued countably

additive vector measure.
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Proof. Let F denote the linear hull of 77. The mapping S from l^(X, sé)
into E, such that S(e(A)) = p(A) for every A e sé , has closed graph, since by

hypothesis up e M(sé) for every u e F . By Theorem 1 of [3], there is some

GeWp such that K = S~X(G) is dense in l^(X, sé) and barrelled.
Again by Theorems 1 and 14 of [8], the restriction of S to K admits a

continuous extension U in l°°(X,sé) with values in G(^g) , so p is strongly

additive because of Rosenthal's theorem [2]. Now p is countably additive,

since if {A„ , «=1,2,...} is a sequence of pairwise disjoint subsets of X

belonging to sé, we have that p((j{A„, n = 1, 2,...}) is the only adherent

point of the sequence {J2(p(Ap), p = 1, 2, ... , n), n = 1, 2, ...}. In fact,
up((j{An ,«=1,2,...}) = (zZ(up(Ap), p = 1, 2, ... ), for each u e 77.

In the last theorem, the subspaces L belonging to Wp do not contain a copy

of /°° and are Yr with a topology stronger than the induced one. Now we are

going to prove that the former theorem can also be established if these subspaces

L, provided with a topology stronger than the initial one, are of the class Ar

defined by Valdivia in [6].
We shall need the following well-known result of measure theory.

(c) Let {k„ , n — 1, 2, ...} be a sequence of elements of M(sé). If lim kn(A)

= k(A) for each A e sé , then k e M(sé).
This result states that M(sé)(o(M(sé), Iq°(X , sé))) is sequentially com-

plete. The next proposition shows that M(sé)(o(M(sé), E)) is also sequen-

tially complete when Tí is a dense and barrelled subspace of l™ (X, sé ). If

sé is infinite, there are in M(sé)(o(M(sé), Iq°(X, sé))) bounded sequences

without adherent point in M(sé). In fact, let {An, n e N} be a sequence of

nonempty pairwise disjoint elements of sé . Let t„ be a point of An , and let

ô„ be the Dirac measure on t„ . If k e M(sé ), we can find a p such that if

M : = \J{An , n > p} , then |A(A7)| < 1/2, and therefore, for n > p we have

that \(Sn-k)\ > Sn(M) - \k(M)\ > 1/2. In [4], is shown that in lx(o(lx, 1°°))
there are bounded sequences without any adherent point.

Proposition 1. If E is a dense and barrelled subspace of Iq°(X, sé) then the

space M(sé)(o(M(sé), E)) is sequentially complete and lg°(X,sé) is con-

tained in the bounded closure of E with respect to the dual pair (E, M(sé)).

Proof. The 7-bounded subsets of M(sé) axe 7-equicontinuous, and since E

is dense in Iq°(X, sé), they are also Iq°(X, ¿/)-equicontinuous. Hence the

E-bounded subsets of M(sé) axe Iq°(X , j/)-bounded. Thus, the second affir-

mation follows.

Now let D be an absolutely convex subset of M(sé) that is bounded and

closed under o(M(sé), E). Since D is rj(M(^), Iq°(X , sé))-compact, we

have that the topologies coincide in D and also the translations invariant uni-

formities induced by o(M(.sf), l^(X ,sé)) and o(M(sé), E).
Hence any o(M(sé), 7s)-Cauchy sequence {k„ , n = 1, 2, ...} in M(sé) is

also o(M(sé), ¡(^(X, j/))-Cauchy, and by result (c) there is some k e M(sé)

such that lim k„ = k under o(M(sé), l^(X, sé)).

In particular, when X = N and sé = 2N , we have that if E is any dense and

barrelled subspace of /g° then lx(o(lx, E)) is weakly sequentially complete.

Proposition 2. Suppose that W is a p-net contained in a space F, and let f
be a linear mapping from ¡Q°(X,sé) into F having closed graph in the product
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l0x(X,sé)(o(l0x(X,sé), M(sé))) x F . If each L e Wp has a locally convex

topology «52 stronger than the induced by F such that L(&i) is a Ar-space,

then there is some G e Wp containing the range of f such that f is weakly

continuous with respect to the dual pairs (l^(X, sé), M(sé)) and (G, G(¿7q)') .

Proof. By Theorem 1 of [3] and Proposition 1, there is some G such that

E: = f~x(G) is dual locally complete with respect to the dual pair (E, M(sé)),

and its bounded closure Ë contains Iq°(X , sé).

Let g be the restriction of f to E . As g has closed graph in the product

E(o(E, M(sé))) x G(&g) , then by [6, Theorems 2 and 6] the mapping g has
a continuous extension h from Iq°(X, sé)(o(l0x(X, sé), M(sé))) with values

in G(o(G, G(Jg)')) .
The mappings / and g are continuous, taking in 7 a locally convex topol-

ogy weaker than the initial one, and both coincide in E. This fact concludes

the proof.

Theorem 3. Let p be a countably additive measure on sé with values in a space

E. Suppose that F is a space with a p-net W such that each L eWp has a
locally convex topology «52 stronger than the induced by F under which 7(«52)

isa Ar-space. Suppose finally that f is a linear mapping from E into F with

closed graph. Then there exists a G e Wp such that fp is a G(¡J(f)-valued

countably additive measure.

Proof. The mapping S: l^(X, sé )(o(ljf(X, sé), M(sé))) -> E(o(E, E')),
such that S(e(A)) = p(A) for every A e sé is continuous, since up e M(sé)

for every u e E'.

Then T = fS has closed graph in /0°°(X, sé)(o(l™(X, sé), M(sé))) x F .
By Proposition 2, there is some G eWp such that T(l0x(X, se)) c G and

7: l^(X, sé)(o(l^(X, sé) ,M(sé))) -+ G(o(G, G(&¡)')) is continuous.
If v e G(Jg)' , then the continuity of 7 implies that vfp e M(sé), and

consequently the Orlicz-Pettis theorem implies that fp is «^-countably addi-

tive.

Corollary. Let p be an additive measure on sé with values in a space F, and

let H be a o(F', F) total subset of F'. Suppose that F has a p-net W

such that each L e Wp has a locally convex topology «52 stronger than that

induced by F, under which L(!Jf) is a Ar-space. We also suppose that up is

countably additive for every u e H. Then there exists a G eWp such that p is

a G(3c)-valued countably additive measure.

Proof. The corollary follows directly from Theorem 3 and Orlicz-Pettis theorem

taking E = F(o(F, (77))) and / the identity map on E .
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