SAEKI'S IMPROVEMENT OF THE VITALI-HAHN-SAKS-NIKODYM THEOREM HOLDS PRECISELY FOR BANACH SPACES HAVING COTYPE

PAUL ABRAHAM

(Communicated by Andrew M. Bruckner)

ABSTRACT. We prove that a Banach space X has nontrivial cotype if and only if given any σ -field Σ and any sequence $\mu_n \colon \Sigma \to X$ of strongly additive vector measures such that for some $\gamma \geq 1$, $\limsup_{n \to \infty} \|\mu_n(E)\| \leq \gamma \liminf_{n \to \infty} \|\mu_n(E)\| < \infty$ for each $E \in \Sigma$ then $\{\mu_n \colon n \in \mathbb{N}\}$ is uniformly strongly additive.

In a recent note [S] Saeki introduced the notion of a measuroid and, based on his work in measuroids, was able to substantially improve the classical Vitali-Hahn-Saks-Nikodym Theorem [DU, p. 23]—but a price must be paid. The price: the Banach space must satisfy the following "fatness" condition: for each constant C>0 there exists a positive integer m such that given $x_1,\ldots,x_m\in X$, $\|x_i\|\geq 1$ for each $i=1,\ldots,m$, there exists $F\subseteq\{1,\ldots,m\}$ such that $\|\sum_{i\in F}x_i\|\geq C$.

The payoff: given a sequence (μ_n) of strongly additive X-valued vector measures defined on a σ -field Σ such that there exists a constant $\gamma \geq 1$ so that for each $E \in \Sigma \lim \sup_{n \to \infty} \|\mu_n(E)\| \leq \gamma \lim \inf_{n \to \infty} \|\mu_n(E)\| < \infty$ then $\{\mu_n\}$ is uniformly strongly additive.

In this note we relate Saeki's fatness condition precisely with the geometry of the Banach space. First, a couple of definitions.

Definition 1. We say a Banach space X has cotype $q \ge 2$ if there is a constant $K_q > 0$ such that for each $n \ge 1$, $x_1, \ldots, x_n \in X$, we have

$$\left(\sum_{k=1}^{n} \|x_k\|^q\right)^{1/q} \le K_q \int_0^1 \left\|\sum_{k=1}^{n} r_k(t) x_k\right\| dt$$

where (r_n) denotes the Rademacher sequence on [0, 1].

Received by the editors February 20, 1991; presented at the Special Event in Analysis, Lehigh University, December 14, 1990.

¹⁹⁹¹ Mathematics Subject Classification. Primary 46B10, 46B20.

Key words and phrases. Vitali-Hahn-Saks-Nikodym Theorem, Vitali-Hahn-Saks Theorem, Banach spaces having cotype.

The author was partially supported by a University Fellowship offered through the Graduate College at Kent State University.

Definition 2. We say a Banach space X contains the l_{∞}^n 's uniformly if there is a constant $\lambda > 1$ such that for each $n \ge 1$ there is an n-dimensional subspace E_n of X and isomorphism $\varphi_n: l_{\infty}^n \to E_n$ such that $\|\varphi_n\| \|\varphi_n^{-1}\| < \lambda$.

Maurey and Pisier [MP] have shown that for any Banach space X, X has some cotype if and only if X does not contain the l_{∞}^{n} 's uniformly.

Proposition 3. Let X be any Banach space. The following are equivalent:

- (a) X has cotype.
- (b) X satisfies the fatness condition.
- (c) If (μ_n) is a sequence of strongly additive (respectively, countably additive) X-valued vector measures on a σ -algebra Σ such that there exists $\gamma \geq 1$ such that for each $A \in \Sigma$ we have $\limsup_{n \to \infty} \|\mu_n(A)\| \leq \gamma \liminf_{n \to \infty} \|\mu_n(A)\| < \infty$, then $\{\mu_n\}$ is uniformly strongly additive (respectively, uniformly countably additive).
 - (d) X does not contain the l_{∞}^n 's uniformly.

Proof. (a) \Rightarrow (b). Suppose X has cotype $q \ge 2$. Observe that if $x_1, \ldots, x_n \in X$, $||x_i|| \ge 1$ for each $i = 1, \ldots, n$ then we have

$$n^{1/q} \le \left(\sum_{i=1}^n \|x_i\|^q\right)^{1/q} \le K_q \int_0^1 \left\|\sum_{k=1}^n r_k(t)x_k\right\| dt$$
$$= K_q 2^{-n} \sum_{\varepsilon_1 = \pm 1, \dots, \varepsilon_n = \pm 1} \|\varepsilon_1 x_1 + \varepsilon_2 x_2 + \dots + \varepsilon_n x_n\|$$

where $K_q > 0$ is the cotype q constant. Since the right-hand sum has 2^n terms, for some choice say $\varepsilon_1' = \pm 1, \ldots, \varepsilon_n' = \pm 1$ we have

$$(*) n^{1/q}K_q^{-1} \leq \|\varepsilon_1'x_1 + \varepsilon_2'x_2 + \dots + \varepsilon_n'x_n\|.$$

Let $P = \{i | \varepsilon_i' = 1\}$ and $N = \{i | \varepsilon_i' = -1\}$. From the triangle inequality and (*) we deduce $\|\sum_{i \in P} x_i\| \ge 2^{-1} n^{1/q} K_q^{-1}$ or $\|\sum_{i \in N} x_i\| \ge 2^{-1} n^{1/q} K_q^{-1}$.

Hence, given C > 0, choose n so that $2^{-1}n^{1/q}K_q^{-1} \ge C$ in order to fulfill the fatness condition.

- $(b) \Rightarrow (c)$. [S, Corollary 8].
- (c) \Rightarrow (d). Suppose X contains the l_{∞}^n 's uniformly. Then, we have a constant $\lambda > 1$ such that for each $n \ge 1$ there is an n-dimensional subspace E_n of X and an isomorphism $\varphi_n : l_{\infty}^n \to E_n$ such that $\|\varphi_n\| = 1$ and $\|\varphi_n^{-1}\| < \lambda$. Therefore, for each $n \ge 1$ and each $F \subseteq \{1, \ldots, n\}$, $F \ne \emptyset$,

$$\left\|\sum_{i\in F}\varphi_n(e_i^{(n)})\right\|\leq 1$$

and

$$\left\| \sum_{i \in F} \varphi_n(e_i^{(n)}) \right\| \ge \lambda^{-1}$$

where $e_1^{(n)}, \ldots, e_n^{(n)}$ denotes the unit vector basis elements of l_{∞}^n .

Now, for each $n \ge 1$, define $\mu_n: P(\mathbb{N}) \to X$ by $\mu_n(\Delta) = \sum_{i \in \Delta \cap \{1, \dots, n\}} \varphi_n(e_i^{(n)})$. Clearly, each μ_n is finitely additive. In fact, each μ_n is countably additive since given $(B_i) \subseteq P(\mathbb{N})$, $B_i \cap B_j = \emptyset$ for each $i \ne j$, $B_i \cap \{1, \dots, n\} = \emptyset$ for all i sufficiently large. From (**) and (***) it follows that for each $\Delta \in P(\mathbb{N})$,

 $\limsup_{n\to\infty} \|\mu_n(\Delta)\| \le \lambda \liminf_{n\to\infty} \|\mu_n(\Delta)\| < \infty$. However, (μ_n) is not even uniformly strongly additive since $\|\mu_n(\{n\})\| \ge \lambda^{-1}$ for each $n \ge 1$.

- $(d) \Rightarrow (a)$. One direction of the theorem of Maurey and Pisier already noted.
- Remark 4. It is not difficult to see that in Proposition 3 we can add the following equivalent statement:
- (c') If (μ_n) is a sequence of X-valued vector measures on a σ -field Σ and m is a countably additive nonnegative measure such that for each n, then μ_n is m-continuous, and if there exists a constant $\gamma \geq 1$ such that for each $A \in \Sigma$ we have $\limsup_{n \to \infty} \|\mu_n(A)\| \leq \gamma \liminf_{n \to \infty} \|\mu_n(A)\| < \infty$ then $\{\mu_n\}$ is uniformly m-continuous.

Hence, we also have an improvement of the classical Vitali-Hahn-Saks Theorem [DU, p. 24] that holds precisely when the Banach space has cotype.

REFERENCES

- [DU] J. Diestel and J. J. Uhl, Vector measures, Amer. Math. Soc. Surveys, vol. 15, Amer. Math. Soc., Providence, RI, 1977.
- [MP] B. Maurey and G. Pisier, Séries de Variable Aléatoires vectorielles indépendants et propriétés géométriques des espaces de Banach, Studia Math. 58 (1976), 45-90.
- [S] S. Saeki, The Vitali-Hahn-Saks Theorem and measuroids, Proc. Amer. Math. Soc. 114 (1992), 775-782.

Department of Mathematics and Computer Science, Kent State University, Kent, Ohio 44242

E-mail address: pabraham@mcs.kent.edu