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THE BOUNDEDLY CONTROLLED WHITEHEAD THEOREM

DOUGLAS R. ANDERSON AND HANS J0RGEN MUNKHOLM

(Communicated by James E. West)

Abstract. This note contains a version of the Whitehead Theorem for bound-

edly controlled maps of CW complexes that is often useful in applications and

complements the Whitehead Theorem in our book Boundedly controlled topol-

ogy (Lecture Notes in Math., vol. 1323, Springer-Verlag, 1988). We also include

a version of the Whitehead Theorem valid for simply connected boundedly con-

trolled CW complexes.

0. Introduction

In our book [AM 1 ] we state and prove a version of the Whitehead Theorem

that allows one to decide whether a map /: (X, p) —> (Y, q) between bound-

edly controlled (bc) CW complexes is a bc homotopy equivalence. The version

of the Whitehead Theorem given there [p. 93]' is phrased entirely in terms of

homotopy. In applications it is often useful to have a version that is phrased

in terms of conditions on the low dimensional homotopy and on the homology

of the universal cover. For example, this is the version needed by Vogell in

[V]. We prove such a Whitehead Theorem in this paper. The version of the

Whitehead Theorem proved in [AMI] is the one involving conditions (1), (2),

and (3) in the following theorem.

Boundedly Controlled Whitehead Theorem. Let f:(X,p) -> (Y, q) be a bc
map between finite-dimensional bc CW complexes over the boundedness control

space Z . Then f is a bc homotopy equivalence if and only if

(1) (Y, q) is coextensive with (X,p);

(2) fi: ncn(X, p) —> fncn(Y, q) is an isomorphism for n = 0 and 1; and

either
(3) fi: nc„ (X, p) —► fnc„(Y, q) is an isomorphism for n > 2 ; or

(3')   fi: H*(X) - fH^(Y) is an isomorphism for all n>0.

In this theorem X and Y are not the usual universal covers of (X, p) and

(Y, q) respectively, but are "fragmented versions" of them. These are described
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in §1 (cf. Example 1.12) where we review the ideas from bc topology needed to

understand the statement and proof of this theorem. In particular, Lemmas 1.7

and 1.10 give criteria for recognizing when /, and /, in (2), (3), and (3') are

isomorphisms. The proof of the Boundedly Controlled Whitehead Theorem is

given in §2.

A bc CW complex (X, p) is simply connected if ncn(X, p) = 0 for 77 = 0, 1.

If (X, p) is simply connected, its fragmented universal cover is isomorphic to

the fragmented CW complex associated to (X, p) (cf. Example 1.6). In this

case, the Boundedly Controlled Whitehead Theorem reduces to the following

theorem.

Simply Connected BC Whitehead Theorem. Let f:(X,p)—>(Y,q) be a bc
map between simply connected, finite-dimensional bc CW complexes. Then fi is

a bc homotopy equivalence if and only if (Y, q) is coextensive with (X, p) and

fi: Hfj(X, p) —* Hfj(Y, q) is an isomorphism for all n > 0.

Since H%(X, p) is just the fragmented homology of the fragmented complex

over *p associated with (X, p), the reader may still use Lemma 1.7 to decide

when /, is an isomorphism.

1. A REVIEW OF BOUNDEDLY CONTROLLED TOPOLOGY

This section reviews the concepts from [AMI] needed to understand the state-

ment and proof of the Boundedly Controlled Whitehead Theorem.

Let Z be a topological space. A boundedness control structure on Z is a pair

(9fJ, C) where q? is a directed family of nonempty subsets of Z ordered by

inclusion and C: $ —» ty is an order-preserving function that satisfies certain

properties [pp. 41, 42]. Among these are that for every K £ *p, K c CK,

that Z = \J{C"K I /7 = 0, 1, 2, ...} and that for every K £ qj, there is a
minimal element K0 £ ty with K0 C K. A boundedness control space is a

space Z together with a boundedness control structure (*p, C). We denote a

boundedness control space simply by Z .

Example 1.1. We recall that a metric p: Z x Z —> E+ is proper if p(z, -): Z —>

R+ is proper for every z £ Z. Let (Z, p) be a proper metric space for

which B(z, r) C B(y,s) implies that B(z, r+ I) C B(y,s + 1). Let <p =
{B(z, n)\(z,n)£Z x N} , and set C(B(z, n)) = B(z, n + 1). Then (<p, C)
is a boundedness control structure on Z called the metric boundedness control

structure.

Let Z be a boundedness control space. A boundedly controlled (or simply,

bc) CW complex over Z is a pair (X, p) where X is a CW complex and

p: X —> Z is a continuous map. It is also required that there be an integer

77 > 0 so that for every cell e £ X there is a minimal element Ke £ qj with

p(e) c Cn(Ke). If (X, p) is a bc CW complex over Z and K £ <p, let XK be

the smallest subcomplex of X containing p~x(K).

Let (X, p) and (Y, q) be bc CW complexes over Z . We say that (X, p)

and (Y, q) are coextensive if there is an integer 777 > 0 so that for all K £ *p,

if XK / 0, then YC">k ¥=■ ® and if YK ̂  0 , then Xc>»k # 0 -

A boundedly controlled (or simply, /3c) map fi: (X, p) —> (Y, q) of delay d
is a continuous map f:X—>Y for which there is an integer d > 0 so that

for every A' e *P, fi(XK) C T^^-. Let (X, p) x I = (X x I, pn) where 77 is
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projection on the first factor. Then there are obvious notions of a bc homotopy

between bc maps and of / being a bc homotopy equivalence.

Some background is needed to define the algebraic invariants, boundedly con-

trolled homotopy, and fragmented homology that appear in the BC Whitehead

Theorem.

A category with endomorphism [p. 3] is a triple (23, C, t) consisting of a

category 23 , a functor C: 23 —> 23 , and a natural transformation x : 7 —> C

satisfying Xc(B) = CxB for all objects B of 23. Here 7 is the identity functor

of 23. When C and x are clear from the context, we denote a category with

endomorphism simply by 23 .

Example 1.2. Let (23, C) be a boundedness control structure on Z , and regard

the partially ordered set 23 as a category with morphisms the inclusions. Let

t: 7 —► C be the natural transformation with x(K) the inclusion K C CK for

every K. Then (23, C, t) is a category with endomorphism.

The property of being a category with endomorphism reproduces itself under

certain constructions.

Example 1.3. Let G: 23 —► 0 be a functor where 23 is a category with endo-

morphism and <£> is the category of small groupoids. Let 23(7 be the cat-

egory with objects pairs (x, B) where x e G(B) and B £ 23 and with

morphisms pairs (co, i): (x, B) -* (y, A) where i: B -> A is a morphism

in 23 and co: G(i)(x) —> y is a morphism in G(A). Let C: 23C7 -» 23G
be given on objects by C(x,B) = (G(xB)(x), CB) and on morphisms by

C(co, i) = (G(xA)(co), C(i)). Let f: 7 —► C be given by x(x, B) = (lx, xB).
Here 7 is the identity functor. Then (23C7, C, x) is again a category with en-

domorphism. Notice there is a forgetful functor p: 23(7 —> 23 that sends (x, B)

to 5.

Example 1.4. Let 23 be a category with endomorphism, and consider the func-

tor category C53 . Then C and x, respectively, induce C: <£s —► ff*8 and

?: 7 -» C by setting C(F) = FC, C(v) = F(vc) when v: F -> C7 and
t?f = 7r(r), respectively. Then (ff® , C, f) is again a category with endomor-

phism.

To simplify notation, we usually denote C and x of Examples 1.3 and 1.4

by just C and x, respectively.

Let (23, C, x) be a category with endomorphism. For any object B £ 23,

set x°(B) = 1 and x"(B) = xCn-\B-xCBxB for n > 1. The collection of

morphisms X = {xn(B) | B £ 23, 77 > 0} admits a calculus of left fractions

[p. 5], and we may form the category of fractions 23(X_1). Let Q: 23 —► 23(Z_1)

be the natural functor. For B, e 23 (i = 1,2), every morphism h: Q(BX) ->

<2(fl2) has the form Q(xd(B2))~xQ(f) for some /: Bx -» 0% . We say that
5 e 23 represents Q(B) and that / is a morphism of delay d representing h .

Thus if 7?, e 23 (/ = 1,2), then their images in 23(I_1) are isomorphic if
and only if there are morphisms /: Bx —* CmB2 and g: B2 —> CnBx in 23 for
which Cm(g)f = xm+n = Cn(f)g .

Proposition 1.5. If the category 23 is abelian and C preserves finite products and
kernels, then 23(X_1) is abelian. In particular, if € is abelian, then (^(X-1) is

abelian.
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Proof. The first sentence is Corollary 2.5 [p. 9]. If C, is abelian, so is (f/8 , and

the second sentence follows from the first and Example 1.4.

We are now ready to define fragmented spaces and their homology.

Let 23 be a category with endomorphism and €W be the category of CW

complexes. Then (CHJ^X-1) is called the category of fragmented CW com-

plexes over 23 . An object in this category is called a fragmented CW complex

over 23 and is represented by a functor X: 23 —> £233. We often write XB in-

stead of X(B). If X, Y: 23 —► €W represent fragmented CW complexes over

23, we say f: X -* Y is a morphism of delay d if f is represented by a natural

transformation f:X—>C Y; i.e., a family of maps {fB: XB —> YCdB \ B £ 23} .

Example 1.6. Let (X, p) be a bc CW complex over the boundedness control

space (Z, 23, C), and for K £ 23, let Xk be the smallest subcomplex of X
containing p~x(K). The functor X': 23 -> €W sending K to XK is called the

fragmented CW complex over 23 associated with (X, p). If f: (X, p) —> (Y, q)

is a bc map of delay d, then the collection of maps {j~\Xk '■ Xk —> YCdK\K £

23} gives a natural transformation /': X' —► C Y' of delay d representing a

morphism X' -» 7' in £30*(2"^.

Let X: 23 -» <£2U represent a fragmented CW complex over 23 . For any 77 >

0, the composite functor 23 -?-+ £233 -^ 2lb represents an object of 21b53 (X~')

called the nth fragmented homology of X and denoted by HF(X). Here

2lb is the category of abelian groups and 77„ is the «th singular homology

group. If /: X —> Y is a map of fragmented spaces with delay d, then the

collection {fB»: H„(XB) —> H„(YCdB) \ B £ 23} constitutes a morphism in 21b53

representing a morphism /,: HF(X) —> HF(Y).

The proofs of Lemmas 1.7 and 1.10 are contained in the discussion on

[pp. 23-29].

Lemma 1.7. Let fi: X —> Y be a morphism of delay d of fragmented spaces
over 23. Then fi: HF(X) —* H^(Y) is an isomorphism if and only if there is

an integer m = 777(71) so that in the diagram

H„(XB)     --►     Hn(YCdB)

X(rm(B)). \x(xm(Cd(B)).

Hn(XcmB) —-*■ Hn(YCm+dB)
f(CmB).

ker/(5), c kerX(xm(B)), and imX(xm(Cd(B))t C im/(Cm5),.

The relative homology of a fragmented pair is defined similarly. In this case,

(X, Y) is a functor 23 -» C22J2 into the category of pairs of CW complexes

and H^X, Y) is represented by the composite functor 23 (^' C2B2 -^ 2tb .

Furthermore, the family of homomorphisms {d: H„(Xk, Yk) —» H„-X(Yk)}

represents a morphism d: H%(X, Y) —* H^_t(Y) that fits into a long exact

sequence

(1 8) -► HFn+x(X, Y) -£♦ HnF(Y) Ju HF(X)

1%HF(X,Y)-^HF_X(Y)^-.-
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where /, and 7* are induced by the inclusions.

Example 1.9. Let X: 23 -» £233 represent a fragmented CW complex, G: £233 -♦
0 assign to each CW complex its fundamental groupoid, and VSG(X) be the

category of Example 1.3. This category is called the fundamental groupoid of X

(with some abuse of language). Its objects are pairs (x, B) where x £ XB and

B £ 23 , and its morphisms are pairs (co, i): (x, B) -» (y, A) where i: B —> A

is a morphism in 23 and co is a homotopy class of paths from y to X(i)(x)

in XA where the homotopy is modulo endpoints. Notice that in *BG(X),

nx(XB, x) is the group of self-maps of (x, B).

Let X: 23 -> £233 be a fragmented CW complex and *BG(X) be its funda-

mental groupoid. Then nF(X) is the object of cSGW(X_1) represented by the

functor nn: (BG(X) —> £ that sends (x, B) to 7r„(XB, x), the nth homotopy

group (or pointed set, if n = 0) of (XB, x). Here £ is the category of pointed

sets (if n — 0), groups (if n = 1), or abelian groups (if n > 2). nF(X,p)

is called the nth fragmented homotopy of X. Since nx(XB, x) is the group

of self-maps of (x, B) in <BG(X), nF(X) has the actions of all these "local"

fundamental groups built into it.

Let /: X -» Y be a morphism of delay d, /,: <BG(X) -* 23(7(7) be the

functor sending (x, B) to (fB(x),CdB) and ^^(I-'l^^fl-1)
be induced by precomposition with yjj. The family {/,: nn(XB, x) ->

nn(^cdB > /(•*)) I (•* > •#) e 23(7(X)} represents a morphism

in £!BG(jr)(X-1). It follows from [p. 61] that / and fi are independent of 0"

in the sense that they are unique up to a canonical equivalence.

If X' is the fragmented CW complex over 23 associated with the bc CW

complex (X, p) over Z as in Example 1.6, we call 23(7(X') the fundamental

groupoid of (X, p) and denote this category by 23(7(X, p). Similarly, we de-

note nF(X') by ncn(X, p) and call this the nth bc homotopy of (X, p). It is

represented by the functor that sends (x, K) £ 23(7(X, p) to n„(XK, x). If

/: (X, p) -* (Y, q) is a bc map of delay d, then the family of homomorphisms

{/,: nn(XK, x) -» nn(YCdK, f(x)) \ (x, B) £ 23(7(X)} represents

fi: ncn(X, p) ^ fncn(Y, q).

Lemma 1.10. Let f: (X, p) —> (Y, q) be a bc map of delay d between bc
CW complexes over the boundedness control space Z . Then fi: nc„(X, p) —>

fncn(Y, q) is an isomorphism if and only if there is an integer m = m(n) so

that in the diagram

nn(XK,x)    -^   n„(YCdK,fi(x))

JO. jl,

nn(XCmK,x) ——> nn(YCm+dK, f(x))
Sl,

ker^o* Q kery'o* and imy'i* C im/i» . (If n = 0, the first condition is easily seen

to imply that iK,(e nn(XK, x) have /0,(£) = /0,(C)- then 7o»(£) = 7o.(C)■)

Here j0: (XK, x) -» (XCmK, x) and ;,: (YCdK, f(x)) -* (YCd^K, f(x)) are

the inclusions.



566 D. R. ANDERSON AND H. J. MUNKHOLM

The reader should be able to formulate the analogous lemma describing when

a map of fragmented spaces induces an isomorphism /,: nF(X) —> fnF(Y).

Let (Y, X): 23 -* £2332 be a pair of fragmented CW complexes over 23.
Then nF(Y, X) is the object of c^G(X){Jrl) represented by the functor
7r„(y, X): <&G(X) -► £ that sends (x, B) to nn(YB, XB, x). Here £ is the

category of pointed sets (if / = 0, 1), groups (if 7 = 2), or abelian groups (if

i > 3). The family {d: n„(YB, XB , y) —> nn-X(XB, y)} represents a morphism

d: nF(Y, X) —► nF_x(X) that fits into a long exact sequence

(1 n) -► <+i(Y, X) JU nF(X) Ju i'-nF(Y)

JunF(Y,X)^nF_x(X)^---

Example 1.12. Let X: 23 -> £233 represent a fragmented complex, and let

(SG(X) be its fundamental groupoid as in Example 1.9. If (x, B) £ fBG(X),

let p(x, B): (X(x, B), x) -* (X(B),x) be the terminal point map where

(X(x, B), x) is (P(XB , x)/ ~,ex), P(XB , x) be the space of paths in XB

that begin at x, ~ be the relation of homotopy modulo endpoints, and ex is the

constant path at x. We note that for every (x, B), p(x, B): X(x, B) —► XB is

the universal cover of the component of XB that contains x. If (co, i): (x, B)

->(y,A) in fBG(X), let X(co, i): X(x, B) -* X(y, A) be the map that sends

a to coX(i)(a). Then X: <BG(X) -» £233 represents an object of £23358G(X) (X~!)

called the fragmented universal cover of X and denoted also by X. Clearly, X

is simply connected in the sense that nF (X) = 0 for n = 0, 1.

2. Proof of the Boundedly Controlled Whitehead Theorem

The proof of the Boundedly Controlled Whitehead Theorem requires two
lemmas. Let 23 be a category with endomorphism and (Y, X): 23 —> £233

be a pair of fragmented CW complexes over 23. Let Y: 23(7(7) -» £23J be

the universal cover of Y, and for each (x, K) with x £ Xk , let X(x, K) =

P(x K)(Xx) where P(X,k)'- (Y(x, K), x) -* (YK, x) is the map of Example 1.12.

Then (x, K) !-► (Y(x, K), X(x, K)) is a pair of fragmented CW complexes

over 23' = (BG(X), which we denote by (f-Y, X) since the functor (x, K) *->

(Y(x,K),x) is just f-Y . Let 23" = 23'(7(X) and p: 23" -+ 23' be the forgetful
functor of Example 1.3.

Lemma 2.1. Let (Y, X) be a pair of fragmented CW complexes over 23 and fi:

X —► 7 be the inclusion, and suppose

(a) 7 75 coextensive with X and

(b) /,: nF(X) —> fnF(Y) is an isomorphism for n = 0 and 1 .

Then p,nF(f-Y ,X) = nF(Y, X) for all n>2.

Proof. For each object (x, K) £ 23', let p [ (x, K) be the comma category of

objects over (x, K). An object in this category is a triple ((z', K'), g) where

(z', K') £ 23" and g: p(z', K') -► (x, K) is a morphism in 23'. By defini-

tion p\nF(Y, X)(x, K) is the colimit over p [ (x, K) of the functor that

sends ((z', K'), g) to n^PYK>» XK>, z'). For K' = (x, K) £ 23', the objects

((z',K'), 1) with  z' £ Xk<  are cofinal in the category p \ (x, K).   Since
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there is a morphism ((z\, K'), 1) —► ((z'2, K'), 1) if and only if z\ and z'2

are in the same component of XK' and these morphisms are isomorphisms,

P\nF(fY, X)(x, K) = Y,n,(YK', XK', z) where the sum runs over a set {z}

of representatives for the components of XK' ■ If we assume thej>referred base-

point y of 7/c is in the set, then there is also an inclusion i: n„(YK', XK', y) ->

p<nF(flY, X)(x, K). By (a), (b), and the analogue of Lemma 1.10 for frag-

mented spaces, there are integers M < N such that the map Y^ —> YCmk<

carries all the components of XK' to the same component of XCmK' and the

map YcmK' —> YcnK' carries any two paths in XcmK' with the same endpoints

to homotopic paths in XcnK' ■ Hence there is a well-defined homomorphism

a- ^^n(YK', XK', z) -> nn(YCNK', Xcnk> , y).

Finally, since P{XyK)'- (7(x, K),y) -* (YK, x) is a covering map, there is an

isomorphism

p,: nn(YCsK., XCNK,, y) -» nn(YCsK,, XC»K,, x) = nF(Y, X)[CN(x, K')].

Then the composite p,cr: p\nF(fY, X) -* nF(Y, X) is an isomorphism with

inverse ip~x .

Lemma 2.2. Let (7, X) be as in Lemma 2.1. Then the following statements

are equivalent:

(a) /,: nF(X) —> /!7t£(7) 75 an isomorphism for all n > 0.

(b) /*: HF(X) —> fHF(Y) is an isomorphism for all n>0.

Proof. By Proposition 1.5, most of the terms of the exact sequence (1.11)

-► 7CF+l(Y,X) JU nF(X) Ju fnF(Y) Ju nF(Y, X) JU nF_x(X) — ...

lie in an abelian category. Hence (a) holds if and only if nF(Y, X) = 0 for

all n > 0. (The special arguments needed to show this for n < 2 are given

in Lemma 4.7 [p. 25].) Since 7 is simply connected, it follows from Lemma

2.1(b) that X is simply connected. Hence pr. abB'cw(I-1) -> 2tb*'(X-')

is an equivalence of categories by Theorem 5.1 [p. 69], and by Lemma 2.1,

nF(Y,X) = 0 if and only if nF(fY ,X) = 0. Since 7 and X are simply
connected, the Relative Hurewicz Theorem for fragmented complexes/Theorem

8.2 [p. 86], implies that the latter condition holds if and only if HF(fY, X) = 0
for all n > 0. Since the exact sequence of (1.8)

-► HF+x(fY, X) JU HF(X) Ju HF(fY)

JU HF(fY,X) JU HF_X(X) —» •••

lies in an abelian category by Proposition 1.5, HF(fY, X) = 0 for all n > 0

if and only if ?.: HF(X) —* HF(fY) is an isomorphism for all n > 0. Let

p'(x, K): X(x, K) —> XK be the universal cover of the component of XK

containing x as in Example 1.12. Then for each (x, K) £ 23', there is a

map q(x, K): X(x, K) -> X(x, K) with p(x, K)q(x, K) = p'(x, K).   Let
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q: X -> X be represented by the family of maps {q(x, K) | (x, K) £ 23'}.

Then iq = fi covers /, and the diagram

HF(X) -^-» fHF(Y)

«■! 1"
HF(X) — HF(fY)i.

commutes. Since X is simply connected, q is an isomorphism of fragmented

spaces. Hence q* is an isomorphism. Thus ?, is an isomorphism for all n if

and only if (b) holds and Lemma 2.2 follows.

Proof of the Boundedly Controlled Whitehead Theorem. By a mapping cylinder

argument (cf. the proof of Corollary 10.4 [pp. 96-97]), we may assume / is an

inclusion. Since the Whitehead Theorem given in Corollary 10.4 [p. 93] shows

that fi: (X, p) —» (7, q) is a homotopy equivalence if and only if (7, q) is co-

extensive with (X, p) and fi: ncn(X, p) -» f-nc„(Y, q) is an isomorphism for

all n > 0, it suffices to show that (l)-(3) are equivalent with these conditions.

This follows immediately from Lemma 2.2. The proof is complete.
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