ON PURELY INFINITE C*-ALGEBRAS

JA A JEONG AND SA GE LEE

(Communicated by Palle E. T. Jorgensen)

ABSTRACT. We find conditions under which a quotient C^* -algebra A/I of a purely infinite C^* -algebra A becomes purely infinite. S. Zhang proved that if A is a σ -unital, simple, purely infinite C^* -algebra, then a hereditary C^* -subalgebra A_X is a stable or unital for each X of A_+ . We prove the converse for a completely σ -unital infinite simple C^* -algebra.

Introduction

A C^* -algebra A is said to be *infinite* if A has an infinite projection and *purely infinite* if the hereditary C^* -subalgebra $(xAx)^-$ contains an infinite projection for each nonzero positive element x of A. Clearly, if A is purely infinite, then A is infinite and every hereditary C^* -subalgebra of A is purely infinite.

In [9], Zhang proved that a purely infinite simple C^* -algebra A has the property FS: the set of selfadjoint elements with finite spectra is norm dense in A_{sa} . It is well known [3] that A has FS if and only if its real rank RR(A) is zero, that is, the set of invertible selfadjoint elements is norm dense in A_{sa} . Roughly speaking, RR(A) = 0 means that A abounds in its projections, so that A satisfies LP: A is the closed linear span of its projections, but the converse is not true in general.

There is a purely infinite nonsimple C^* -algebra A with $RR(A) \neq 0$, for example, the multiplier algebra $M(\mathscr{C} \otimes \mathscr{K})$ of $\mathscr{C} \otimes \mathscr{K}$ [11], where \mathscr{C} is the Calkin algebra and \mathscr{K} is the compact operators on the separable infinite-dimensional Hilbert space. It was shown [3, 11] that if A is a C^* -algebra, and if I is a closed two-sided ideal of A, then RR(A) = 0 if and only if RR(I) = 0, RR(A/I) = 0, and every projection in A/I lifts to a projection in A. It is more or less known to experts that a similar result holds for the question of extensions of purely infinite C^* -algebras. In §2, we obtain partial results for the quotients of purely infinite C^* -algebras.

It is not known whether an infinite simple C^* -algebra is purely infinite or not. In §3, we will find a condition for an infinite simple C^* -algebra to be purely infinite.

Received by the editors June 17, 1991.

¹⁹⁹¹ Mathematics Subject Classification. Primary 46L05.

Key words and phrases. Purely infinite C^* -algebras, annihilators, hereditary C^* -subalgebras. This research was partially supported by KOSEF, 1989–1991 and GARC-KOSEF, 1991.

Throughout this note, A_x denotes the hereditary C^* -subalgebra $(xAx)^-$ of A generated by a positive element $x \in A$, and $\pi: A \to A/I$ denotes the canonical *-homomorphism.

2. Quotients and extensions of purely infinite C^* -algebras

Let I be a closed two-sided ideal in a C^* -algebra A and $\operatorname{ann}(I) = \{a \in A | aI = Ia = 0\}$ the set of all annihilators of I in A. Then $\operatorname{ann}(I)$ becomes a closed two-sided ideal in A. If $\operatorname{ann}(I) = 0$, then A can be regarded as a C^* -subalgebra of the multiplier algebra M(I) of I. If I is a σ -unital simple C^* -algebra with FS, then M(I)/I is purely infinite [6, Theorem 1.3], hence A/I also becomes purely infinite whenever A/I sits in M(I)/I as a hereditary C^* -subalgebra. In particular, this happens when A is a hereditary C^* -subalgebra of M(I). In this section, we are interested in the case $\operatorname{ann}(I) \neq 0$.

Theorem 1. Let A be a purely infinite C^* -algebra and I a closed two-sided ideal in A with ann(ann(I)) = I. Then the quotient C^* -algebra A/I is purely infinite.

Proof. For any nonzero positive element x of A, the hereditary C^* -subalgebra $(A/I)_{\pi(x)}$ of A/I generated by $\pi(x)$ is just $\pi(A_x)$ and so it suffices to show that $\pi(A_x)$ has an infinite projection whenever $x \notin I$. First we show that $A_x \cap \operatorname{ann}(I) \neq 0$. Assuming not, for each $b \in (A_x)_+$ and $z \in \operatorname{ann}(I)$, we have $b(z^*z)b \in A_x \cap \operatorname{ann}(I) = 0$, i.e., zb = 0. Hence $(A_x)_+ \subseteq \operatorname{ann}(\operatorname{ann}(I)) = I$, which contradicts $\pi(A_x) \neq 0$. Therefore, as a nonzero hereditary C^* -subalgebra of A, $A_x \cap \operatorname{ann}(I)$ has an infinite projection. On the other hand, it is obvious that $\pi(A_x \cap \operatorname{ann}(I)) \cong A_x \cap \operatorname{ann}(I)$. Hence, $\pi(A_x)$ has an infinite projection because $\pi(A_x \cap \operatorname{ann}(I)) \subseteq \pi(A_x)$.

Recall that a C^* -algebra A is said to be *primitive* if A does not contain two orthogonal nonzero ideals.

Corollary 2. Let A be a purely infinite C^* -algebra and I a closed two-sided ideal in A with $ann(I) \neq 0$. If A/I is primitive, then A/I is also purely infinite.

Proof. Assuming $\operatorname{ann}(\operatorname{ann}(I))$ contains I strictly, we have that $\pi(\operatorname{ann}(I))$ and $\pi(\operatorname{ann}(\operatorname{ann}(I)))$ are two orthogonal nonzero ideals in A/I, which contradicts our assumption that A/I is primitive. Hence $\operatorname{ann}(\operatorname{ann}(I)) = I$ and we complete our proof by Theorem 1.

Corollary 3. Let A be a purely infinite C^* -algebra. If I is a prime closed two-sided ideal in A with $ann(I) \neq 0$, then A/I is purely infinite.

Proof. It is easy to show that A/I is primitive if I is prime. Therefore, A/I is purely infinite by Corollary 2.

In [6, Theorem 1.1], it was proved that if A is a σ -unital C^* -algebra with FS, then every hereditary C^* -subalgebra of M(A) satisfies LP. As mentioned in the introduction, the purely infinite C^* -algebra $M(\mathscr{C} \otimes \mathscr{K})$ does not have FS, while every hereditary C^* -subalgebra of $M(\mathscr{C} \otimes \mathscr{K})$ satisfies LP since $\mathscr{C} \otimes \mathscr{K}$ is a σ -unital C^* -algebra with FS.

Corollary 4. Let A be a purely infinite C^* -algebra such that every hereditary C^* -subalgebra of A satisfies \mathbf{LP} . If I is a unital closed two-sided ideal in A, then A/I is purely infinite.

Proof. Let q be the unit of I. To prove our assertion, it suffices to show that $\operatorname{ann}(\operatorname{ann}(I)) = I$ by Theorem 1. Assuming $\operatorname{ann}(\operatorname{ann}(I)) \neq I$, we can take a nonzero projection p in $\operatorname{ann}(\operatorname{ann}(I))$ with $p \notin I$ because I and $\operatorname{ann}(\operatorname{ann}(I))$ satisfy LP . Then it is easy to show that p - pqp is a nonzero element of $\operatorname{ann}(I) \cap \operatorname{ann}(\operatorname{ann}(I))$, which is a contradiction.

Remark 5. For the question when purely infiniteness is preserved under extensions, the following partial answer would be well known to the specialists, as was pointed out by the referee: Let I be a closed two-sided ideal in a C^* -algebra A with FS. If I and A/I are purely infinite and every projection in A/I lifts to a projection in A, then A is also purely infinite.

3. Stability of purely infinite simple C^* -algebras

Let us recall some terminology: An element x of a unital C^* -algebra A is well-supported if there is a projection $p \in A$ with x = xp and x^*x invertible in pAp, and a C^* -algebra A is completely σ -unital [7] if every hereditary C^* -subalgebra of A is σ -unital.

Theorem 6. Let A be a completely σ -unital simple C^* -algebra. Then the following are equivalent:

- (a) A is purely infinite.
- (b) A is infinite and A_x is either stable or unital for each nonzero positive element x of A.

Proof. (a) \Rightarrow (b) This was proved by Zhang [11, Theorem 1.2] for σ -unital purely infinite simple C^* -algebras.

(b) \Rightarrow (a) Let $x \in A_+$. If A_x is stable, then $A_x \cong A_x \otimes \mathcal{K} \cong A \otimes \mathcal{K}$ by [2, Theorem 1.2], and so A_x is infinite because $A \otimes \mathcal{K}$ is infinite by the assumption.

Now, it remains to show that each unital hereditary C^* -subalgebra A_x of A has an infinite projection. If A_x has a positive element y such that A_y is nonunital, then A_y is stable by our assumption, and so it has an infinite projection as above. Therefore, A_x has an infinite projection since $A_y \subseteq A_x$. In order to complete our proof, it suffices to show that every unital hereditary C^* -subalgebra B of A has a positive element y such that A_y , which is a C^* -subalgebra of B, is nonunital. Since $(y^*Ay)^-$ is unital if and only if y is well-supported [1, 6.1], it is equivalent to show that every unital hereditary C^* -subalgebra B of A has an element which is not well-supported.

Assume that every element in a unital hereditary C^* -subalgebra B of A is well-supported. By [1, Theorem 4.3.5], B has FS. Hence B has no minimal projection [1, 4] since B is an infinite-dimensional C^* -algebra. Therefore, we can take a sequence of mutually orthogonal projections q_n , $n = 1, 2, 3, \ldots$. Then $y = \sum_{n=1}^{\infty} (2^n)^{-1} q_n$ is a positive element of B, and so there exists a projection $q \in B$ such that yq = y and y^*y is invertible in qBq. Since

$$\frac{1}{2^n}q_n = q_n y = q_n(yq) = \frac{1}{2^n}q_n q,$$

we have $q_n \leq q$ for each $n = 1, 2, 3, \ldots$

Now, we consider $z_m = y^*y - (2^{2m})^{-1}q$ for m = 1, 2, 3, ... Then

$$\begin{split} z_m &= \sum_{n=1}^{\infty} \frac{1}{2^{2n}} q_n - \frac{1}{2^{2m}} (q_m + (q - q_m)) \\ &= \sum_{n \neq m}^{\infty} \frac{1}{2^{2n}} q_n - \frac{1}{2^{2m}} (q - q_m) \,, \end{split}$$

and so $q_m z_m = z_m q_m = 0$, $m = 1, 2, 3, \ldots$. Hence, z_m is not invertible in qBq, and the spectrum of y^*y in qBq contains the sequence $\{(2^{2m})^{-1}: m = 1, 2, 3, \ldots\}$. Therefore the spectrum contains 0, which contradicts the fact that y is well-supported by q.

Remark 7. It is well known [1, Theorem 4.3.5] that a C^* -algebra A has FS if and only if the well-supported selfadjoint elements of A are dense in A_{sa} . In spite of this fact, we have shown in the above proof that there is no infinite-dimensional simple unital C^* -algebra with FS in which every element is well-supported.

REFERENCES

- B. Blackadar, Comparison theory for simple C*-algebras, Operator Algebras and Applications, Vol. 1, London Math. Soc. Lecture Note Ser., vol. 135, Cambridge Univ. Press, London and New York, 1988, pp. 21-54.
- L. G. Brown, P. Green, and M. A. Rieffel, Strong Morita equivalence of C*-algebras, Pacific J. Math. 71 (1977), 349-363.
- L. G. Brown and G. K. Pedersen, C*-algebras of real rank zero, J. Funct. Anal. 99 (1991), 131-149.
- 4. M. Rørdam, On the structure of simple C*-algebras tensored with a UHF-algebra, J. Funct. Anal. 100 (1991), 1-17.
- J. Tomiyama, Invitation to C*-algebras and topological dynamics, World Scientific, Singapore, 1987.
- S. Zhang, On the structure of projections and ideals of corona algebras, Canad. J. Math. 41 (1989), 721-742.
- 7. _____, Stable isomorphism of hereditary C*-subalgebras and stable equivalence of open projections, Proc. Amer. Math. Soc. 105 (1989), 677-682.
- 8. _____, C*-algebras with real rank zero and the internal structure of their corona and multiplier algebras, Part III, Canad. J. Math. 42 (1990), 159-190.
- 9. ____, A property of purely infinite simple C*-algebras Proc. Amer. Math. Soc. 109 (1990), 717-720.
- K₁-groups quasidiagonality and interpolation by multiplier projections, Trans. Amer. Math. Soc. 325 (1991), 793-818.
- 11. ____, Certain C*-algebras with real rank zero and their corona and multiplier algebras, Part I, preprint.

DEPARTMENT OF MATHEMATICS, SEOUL NATIONAL UNIVERSITY, SEOUL 151-742, KOREA