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A NOTE ON NONLINEAR VOLTERRA OPERATORS

INDUR MANDHYAN

(Communicated by Charles Pugh)

Abstract. In this paper we discuss a class of nonlinear Volterra operators and

show that they are globally invertible.

1. Introduction

In this paper we study nonlinear Volterra operators of the form

A:u*-m- \   k(x, y)f(u(y))dy.
Jo

These operators are regarded as mappings between function spaces and, hence,

the abstract results of Functional Analysis may be brought to bear on these map-

pings with good results. Since linear Volterra operators are invertible, the non-

linear Volterra operators we consider are locally invertible. Global hypotheses

suffice to ensure that these operators are globally invertible. More specifically,

the operator A is a Fredholm operator of index zero. Suitable hypotheses on

f:R—>R ensure that A is a proper mapping. A well-known result regarding

nonlinear Fredholm operators (see below) enables us to show that A is globally
invertible.

We do the simple case here; namely, the operator A is defined on the space

of continuous functions over the interval [0, 1 ]. There is no loss in generality

since the results are easily carried over, with suitable modifications, to operators
defined on the Lp spaces.1

2. Results

We begin by recalling some definitions and results that will be used in the

sequel.

Definition 1. Let A: E —► E be a continuous mapping on a Banach space E.

We say A is a proper mapping if the inverse image A~X(S) of every compact

set S in E is compact.

We now state a theorem regarding Fredholm operators. The proof of this

theorem may be found in Berger [3]. The statement of the theorem requires
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some terminology. Let A: E —> E be a C mapping on a Banach space E . A

point u is a singular point of A if A'(u), the derivative of A at u, fails to

be invertible. A singular value is the image of a singular point. Let Zp denote

the singular points of A, and let l,v = A(LP) denote the singular values of A .

Theorem 1. Suppose A: E —> E is a Cx proper Fredholm operator of index

zero. Then the cardinality of the set A~x(w) is finite and constant on connected

components of E -1v . In particular, if Zp is empty then A is a Cx global

dijfeomorphism.

We now consider a class of nonlinear Volterra operators and show that they

satisfy the conditions of the above theorem.

Let E denote the space of continuous functions on the unit interval [0, 1 ],

equipped with the sup-norm || • ||. Let k(x, y) denote a continuous kernel

on the unit square and let /:/?—►/? be a C1 function. Define A: E —> E

by A(u) = u-Kf(u), where K: h >-> f^ k(x, y)h(y) dy. Since /is C1 ,

the Omega Lemma2 implies that the operator N: u *-> f(u) is continuously

differentiable. Since K is linear and bounded, A = I - KN is C1 .
The derivative of A at a point u of E is given by the linear operator

A'(u):h^h-K(f'(u)h).

So A'(u) is of the form identity + compact. Hence, A is a Fredholm op-

erator of index 0. Since A'(u) is a linear Volterra operator, its null space is

always trivial. Consequently, by the inverse function theorem, A is a C1 local

diffeomorphism.
Next, suppose f(x)/x —► M2 as x —> +00 and f(x)/x —> Mx as x —> -00 .

Assume f(0) = 0. With these hypotheses on /, we show that A is proper.

Theorem 2. A: E -» E is proper and, hence, a Cx global dijfeomorphism.

Proof. We adapt the proof in [2] to show that A is proper. The idea behind

the proof is to obtain a linear homogenous equation at infinity and then obtain

a contradiction.
Let S be a compact set in E and let {«„} be a sequence in A~X(S). Let

v„ = A(u„) = un - K(f(u„)). Since S is compact, a subsequence of {vn}

converges in S. If {un} is bounded then the sequence {f(un)} is bounded,

and since K is compact, a subsequence of {K(f(u„))} converges. Hence,

a subsequence of {«„} converges. Since A~X(S) is closed the limit of this

subsequence must lie in A~X(S). Thus to show that A is proper it is sufficient

to show that the sequence {un} is bounded.

We argue by contradiction. Suppose {«„} is unbounded. Then passing to a

subsequence if necessary we have ||u„|| —> oc . Let z„ = u„/||w„||, and let

hi ) = lf{y)/y   if^0'
[y)     \f'(0)     otherwise.

Then 7j„/||w„|| = z„ — K(h(u„)zn). Since a subsequence of {vn} converges and

zn and h(u„) are bounded, the compactness of K implies that a subsequence

of {zn} converges, say to z, in E. For notational convenience, we rename

this subsequence as {z„}. Thus, z„ —> z .

2See Abraham, Marsden, and Ratiu.
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Next, let
(M2      ifz(x)>0,

Mx       ifz(x)>0,

f'(0)   ifz(x) = 0.

Now z(x) > 0 implies lim„_+00 un(x) = +00 and z(x) < 0 implies

lim  un(x) = -00.
n—t+oo

Thus, lim„_+00 h(u„(x)) = M2 when z(x) > 0 and \\m„^+00h(u„(x)) - Mx

when z(x) < 0. Hence,

lim k(x,y)h(un(y))zn(y) = k(x, y)w(y)z(y).
n—>+oo

Furthermore, for fixed x and each n , \k(x, y)h(un(y))z„(y)\ is dominated by

an absolutely integrable function. Hence, by Lebesgue's theorem, we have

v(x)
0=   lim  -—- =   lim  z„ -   lim K(h(u„)z„) = z - K(wz).

n—*+oo    Mn n—»+oo n—>+oo

Since z„ —► z and ||z„|| = 1, we have ||z|| = 1. Clearly, /J ||z||2 > 0. But this

implies that the linear Volterra operator g h-> g - K(wg), defined on Z.2[0, 1],

has a nontrivial nullspace, which is impossible. Thus, the sequence {«„} must

be bounded. Hence the operator A is proper as claimed. In view of Theorem

1, we conclude that A is a global homeomorphism. This completes the proof.
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