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WEAK COMPACTNESS IN Lx(p,X)

J. DIESTEL, W. M. RUESS, AND W. SCHACHERMAYER

(Communicated by William J. Davis)

Abstract. We present a characterization of weak compactness in Ll(p, X)

and in more general Banach spaces of vector-valued measurable functions.

Moreover, we slightly refine Talagrand's parametrized version of Rosenthal's /'-

theorem and extend it to L1 (p, X)-bounded sequences.

1. Introduction

This note addresses the problem of characterizing weak compactness in the

space Lx(p, X) of (equivalence classes of) Bochner integrable functions from

a probability space (ft, Z, p) into a Banach space X, endowed with its usual

norm ||/|| l = J\\f\\dp (cf. [1, 2] and the discussion in [3, Chapter IV.2]).

Recently, Ulger [ 12, Theorem 4] presented a characterization of the weakly rel-

atively compact subsets A of Lx(p, X) that are L°°-bounded as those for

which, given any sequence (/„)„ c A, there exists a sequence (/„)„ with

/„ e co{fk | k > n} such that (/„(«))„ is weakly convergent in X for a.e.

wefl, X a general Banach space. Ulger's proof relies in an essential man-

ner on the deep analysis by Talagrand [11] of the parametrized version for

Loc(p, X) of Rosenthal's lx -theorem as well as on James's characterization of

weak compactness.

In §2 of this note we remove the restriction of L°°-boundedness and give

a short and completely elementary proof of the analogous characterization of

general weakly compact subsets of Lx(p, X) solely based on the classical weak

compactness criteria in Banach spaces (Theorem 2.1). Using this characteriza-

tion, we slightly refine the above-mentioned result by Talagrand [11, Theorem

2.1] and also extend it to the case of Lx(p, Ar)-bounded sequences (Theorem

2.4). Extensions of the weak compactness criterion to more general Banach

spaces of vector-valued measurable functions are presented in §3.

2. Weak compactness in Lx(p, X)

We first place Ulger's criterion—extended to general weakly relatively com-

pact subsets of L1 (p, X) —into the context of the classical equivalences to weak
compactness:
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Eberlein, Smul'yan, Grothendieck (cf. [9, §24, 3.(8); 7]): For a subset A of
a Banach space X,  the following are equivalent to weak relative compactness:

(a) weak relative sequential compactness; (b) weak relative convex compactness;

(c) boundedness and the interchangeable-double-limits-property.

Theorem 2.1. Let A be a bounded subset of Lx(p, X). Then the following are
equivalent:

(1) A is weakly relatively compact.

(2) A is uniformly integrable, and, given any sequence (f„ )„ c A, there exists a

sequence (gn)n with gn e co{fk \ k > n} such that (g„(co))n is norm convergent

in X for a.e. weft.
(3) A is uniformly integrable, and, given any sequence (/„)„ c A, there is

a sequence (g„)n with g„ e eo{fk \ k > n} such that (gn(co))n is weakly

convergent in X for a.e. co eft.

Proof. Suppose (1) holds.   Then A  is uniformly integrable (cf.   [3]), and if

(fn)n is any sequence in A then some subsequence (fnk)k converges weakly to

some fi e Lx(p, X), and thus there exists a sequence gk e co{f„m \ m>k,

k e N, such that   ||^-/||i -» 0.   Hence, a subsequence (g„)n of (gk)k

converges to / pointwise a.e. in the norm of X, thus establishing (2).

(2) implying (3) being obvious, it remains to prove that (3) implies (1). Refer-

ring to (c) in the Eberlein-Smul'yan-Grothendieck Theorem (hereafter referred

to as the E-S-G-Theorem), we have to show that, given sequences (fim)m c A

and (tp„)„ c {tp e Lx(p, X)* |   \\tp\\ <1}, we have

a := lim lim <pn(fm) = lim lim cpn(fim) =: $,
n      m m      n

provided the iterated limits exist [7, Corollaire 1 of Theoreme 7].

Given such sequences (fim)m and (fn)n , let (gm)m he the sequence asso-

ciated with (fm)m according to (3), with Eel., p(E) = 0, the exceptional

subset of ft. Define g:Q-»I by g(co) = weak-limit g„(co) for co e ft \ E,

and by 0 e X, otherwise. Clearly, g is essentially separably valued and weakly

measurable, hence strongly measurable. Moreover, by its very definition, and

using Fatou's Lemma and boundedness of A ,

/ \\g\\dp< lliminf\\gn\\dp<liminfj \\gn\\ dp < oo,

so that g e Lx(p, X). Let us show that the sequence (gn)n converges weakly

in Lx(p, X) to g. First note that we can assume Lx(p) to be separable:

consider a countably generated sub-sigma algebra Ii of I such that (gm)m C

Lx (p,~Lx, X). Then, according to [5, Chapter VI.8, Corollary 7], the continuous

linear functionals h on Lx(p, X) are represented by w*-measurable functions

h : ft -> X* such that \\h(-)\\ e L°°(p), the pairing being given by (h, f) =
J (h, f)dp, fi e Lx(p, X). Given any such h, uniform integrability of the

sequence ((h,g„))n and the fact that (h(-), gn(-))-> (h(-), g(-)) a.e. Q, in

conjunction with Vitali's convergence theorem imply that (h, g„) -* (h, g),

thus proving our assertion.
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To complete the proof, note that if hm — Yl[ ai fk{ is anY convex combi-

nation of the (fm)m , and cp e Lx(p, X)* is such that y :— limm <p(fm) exists,
then

r

\V-9(hm)\= ^2oti(y-tp(fki)  < max{\y - tp(fk.)\ | 1 < i < r}.
1

This shows that a = cp(g) — /?, where cp is a weak*-cluster point of (<p„)„ ,

thus completing the proof.   □

An obvious special case of Theorem 2.1 (with ft consisting of just one ele-

ment) is the following version of equivalence (b) in the E-S-G-Theorem.

Corollary 2.2. For a subset A of a Banach space X the following are equivalent:
(1) A is weakly relatively compact.

(2) Given a sequence (x„)n c A, there exists a sequence (y„)„ with y„ e
coi^ | k > n} that is norm convergent.

(3) Given a sequence (x„)„ c A, there exists a sequence (yn)„ with yn e
co{X/t | k > n} that is weakly convergent.

Remarks 2.3. 1. The equivalence of propositions (1) and (3) of Corollary 2.2

is the content of [12, Lemma 2.1], which Ulger proved by using James's char-

acterization of weak compactness via norm-attaining functionals.

2. We deduced Corollary 2.2 as a special case of its parametrized version
given in Theorem 2.1. One can turn around and, conversely, deduce Theorem

2.1 from Corollary 2.2: note that, in the course of our proof of Theorem 2.1,

we actually showed that proposition (3) of this result implies proposition (3) of

Corollary 2.2 for the Banach space Lx(p, X). In this sense, Theorem 2.1 and
the E-S-G-Theorem are equivalent.

3. While Theorem 2.1 is the parametrized version of part (b) of the E-

S-G-Theorem we note in passing that the analogous parametrization of part

(a)—sequences out of a weakly relatively compact subset of Lx (p, X) allowing

for subsequences converging weakly a.e.—does not hold: the sequence (rn)n of
the Rademacher functions in Lx(0, 1) puts that to rest even for X = reals.

A different example to this effect that, at the same time, shows to what extent
the pointwise ranges of weakly relatively compact subsets of Lx(p, X) can be

pathological is the following one for X = cn : Given any bounded sequence

(x„)„ e Co, let K = {rnxn : n e N} c L'([0, 1], cq), where (rn)n denotes the

sequence of the Rademacher functions. Using the material of [3, IV. 1, pp. 97-

98], it is not hard to see that (r„x„) converges to zero weakly in Lx([0, 1], cn)-

However, if (x„)„ is such that no subsequence converges weakly to zero in cn,

then, for every subsequence of (r„x„)„ and every / e [0, 1], the sequence

(rnk(t)x„k)k does not converge weakly in Co-

We now use Theorem 2.1 to present a slight refinement of Talagrand's param-

etrized version of Rosenthal's lx -theorem [11, Theorem 2.1] and, at the same
time, extend it from L°°(p, X)- to Lx(p, X)-bounded sequences.

Theorem 2.4. Assume that (fin)n is a bounded sequence in Lx(p, X). Then

there exist g„ e co{fk | k > n}, n e N, and three measurable subsets Cx, C2,

and LofQ. with p(Cx U C2 U L) = 1 such that
(a) for co e Ci, the sequence (g„(co))„ is norm-convergent in X;
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(b) for co e C2, the sequence (g„(co))n is weakly Cauchy but not weakly
convergent in X;

(c)fior co e L, there is k e N such that the sequence (gn(co))„>k is equivalent

to the unit vector basis of lx.

Proof. Step 1. We first consider the special case where (f„)„ is a bounded

sequence in L°°(p, X). Then, by Talagrand's result [11, Theorem 2.1], there

exist hn e co{fik \ k > n}, n e N, and measurable subsets C, L of ft,

p(C U L) = 1, such that for co e L (c) holds for (h„)„, while for co e C the
sequence (h„(co))n is weakly Cauchy.

Define C2 as the subset of C consisting of those co e C where (h„(co))„

does not converge weakly in X. Note that C2 is measurable. Indeed, there is

no loss of generality in assuming that X is separable and has a Schauder basis.

Denote by Pkyi the canonical projection onto the space spanned by the basis

elements {ek, ... , e{}. We may write C\C2 as the subset of C consisting of

those co such that for e > 0 there is k e N such that for all I > k we have

lim sup \\Pkyi(hn(co) - hm(co))\\ < e.
n ,m—*oo

Clearly, this defines a measurable set.

Let C3 = C\C2 and note that (hn-Xci)n is a bounded sequence in L°°(p,X)

converging weakly pointwise. In particular, by Theorem 2.1, this sequence is

weakly relatively compact in Lx(p, X) and there are g„ e co{hk \ k > n}

(the sets of indices of the convex combinations of the hks even being disjointly

supported) such that, for almost all co e C3, (g„(co))n is norm-convergent in

X. Defining Cx to be this subset of C3, we have finished this part of the

proof.
Step 2. The general case will be reduced to the above special case by means

of the following observation:   □

Lemma 2.5. If (fn)n is a bounded sequence in Lx(p, X) , then there exist

gn e co{fk I k > n}, n e N, and a weight function w e L°+(p) such that

sup{ ||£„(<w)|| x I n e N} < w(co) for all weft.

In fact, it now suffices to apply Step 1 to the sequence (g„/w)„. In or-

der to prove Lemma 2.5, we consider the sequence (vn)„ c Lx(p) defined by

vn(co) — \\fin(co)\\ x. By Komlos's theorem [8], there is a subsequence (v„k)k

that converges in Cesaro mean almost surely. It follows easily that we have

disjointly supported convex combinations

"«=  E ^fvjeco{vk\k>Nn + l),       4n)>0,    £ Xf = l,
j=Nn+\ j=N„ + \

such that (u„)„ converges almost surely. In particular, w(co) := sup„eN u„(co)

is almost surely finite. Letting

;=/V„+l
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we may estimate

sup ||g„(<y)||;r < supw„(w) < w(co).

This completes the proof of Theorem 2.4.

A particular consequence of Theorems 2.1 and 2.4 is the following sufficient
condition for weak relative compactness in Lx(p, X).

Corollary 2.6 (Compare [2, Theorem 2; 12, Corollary 9]). Assume that A is a

bounded and uniformly integrable subset of Lx(p, X) such that, for fi e A,
one has f(co) e Bw a.e. weft, where, for co e ft, 5W c X is weakly relatively

compact. Then A is weakly relatively compact in Lx(p, X).

Finally, we address the following question: What happens if one replaces the

convex combinations by subsequences in the statement of Theorem 2.1? Then

(2) becomes a characterization of norm relatively compact subsets of Lx (p, X).

This is just a consequence of Vitali's convergence theorem, and the proof is left

to the interested reader.

Proposition 2.7. For a subset A of Lx(p, X) , the following are equivalent:

(1) A is relatively norm-compact.

(2) A is bounded and uniformly integrable, and for every sequence (fn)n in

A there is a subsequence (f„k )k that converges almost surely with respect to the

norm of X.

3. Extensions and related results

Analyzing the proof of Theorem 2.1 reveals that we have used little informa-

tion pertaining to the special nature of Lx (p). Indeed, let E be an order contin-

uous Banach lattice with a weak unit. By a well-known representation theorem

[10, Theorem Lb. 14], we may assume that L°°(Q.,1, p) C E c L'(ft,I,/x)
for some probability space (Cl,2Z,p),E being an ideal in Lx(p), the inclu-

sion maps being continuous; moreover, we may identify E* with the space of
(equivalence classes of) measurable functions g on  (Q,l,,p)  such that

\\g\\E. = sup U fig dp \\\f\\E< l|<oo.

The characterization of weakly compact subsets of E has been known for a
long time (cf. [4; 6, Theorem 831]):

Proposition 3.1. Let E be an order continuous Banach lattice with weak unit
represented as above with L°°(p) C E C Lx(p). A subset K c E is weakly

relatively compact if and only if for every g e E* , the set {fig \ fi e K} is
uniformly integrable.

We may now define the space E(X) of strongly measurable functions fi :

ft -> X such that ||/(-)|| x e E > equipped with its usual norm (compare [11,

§3]). Let us formulate the abstract version of Theorem 2.1 for the space E(X).

Theorem 3.2. Let E be an order continuous Banach lattice with weak unit, rep-

resented as above with L°°(p) C E C Lx(p). Then, for a subset A of E(X) ,

the following are equivalent:
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(1) A is weakly relatively compact.

(2) The subset { \\f(-)\\ x \ f e A} of E is weakly relatively compact, and,
given any sequence (f„)n in A , there exists a sequence (g„)„ with g„ e co{fk |

k>n}, and such that (g„(co))„ is norm convergent for a.e.   weft.

(3) As in (2) except for (gn(co))„ being weakly convergent for a.e.   weft.

Proof. The proof is completely analogous to the proof of Theorem 2.1. Suppose

that (1) holds. According to Proposition 3.1 above, in order to prove that (1)

implies the first assertion of (2), it is enough to show that for every g e E*

the set {g(-) \\fi(-)\\ x \ f e A } is uniformly integrable. Noting that the set

{g ' f \ f £ A} is weakly relatively compact in L1 (p, X), this follows from
(the easy part of) Theorem 2.1 . The second assertion of (2) is immediate from

Theorem 2.1
(2) implying (3) being obvious, it remains to show that (3) implies (1). Here,

we use Corollary 2.2: given a sequence (f„)„ c A, we have to find gn e
co{fk | k > n}, n e N, such that (g„)„ is weakly convergent in E(X). By

hypothesis, there exist g„ e co{fk \ k > «}, n e N, such that (gn(co))„ is
weakly convergent in X for a.e.   weft.

The function g(co) = weak-lim gn(co) a.e. weft, which, as in the proof of

Theorem 2.1, is strongly measurable, is an element of E(X): According to [4;

ffl. 10; 10, Lb], we have to show that /• ||^(-)|| x e Lx(p) for all fi e E*, fi >
0. As in the proof of Theorem 2.1, this is a consequence of Fatou's Lemma.

Finally, note that any h e E(X)* can be represented by a weak-star-measur-

able function h : ft —► X* such that \\h(')\\ e E*, the pairing being given
by

(h,f) = j(h(co),f(co))dp(co),        fieE(X).

As, by hypothesis, the sequence ((/?(•), gn(-))) is uniformly integrable, the fact

that (h, gn) -» (h, g) for all h e E(X)* once again follows from Vitali's

convergence theorem just as in the proof of Theorem 2.1. This shows that (gn)n

converges to g weakly in E(X), and thus completes the proof of Theorem 3.2.

Corollary 3.3. Under the assumptions of Theorem 3.2, conditions (1 )-(3) are also

equivalent to:
(4) The subset { \\f(-)\\ x \ f e A} of E is weakly relatively compact in E ,

and A is weakly relatively compact in Lx(p, X).

In closing this paper, we note that Theorem 3.2 reduces to a particularly easy

criterion when applied to reflexive lattices E. As an example, we single out the

case of E = LP(p), 1 < p < oo.

Corollary 3.4. Suppose 1 < p < oo, and let A be a bounded subset of LP(p, X).

Then the following are equivalent:
(1) A is weakly relatively compact.

(2) For each sequence (f„)„ in A, there exists a sequence (gn)n with g„ e

co{fk | k > n} such that (g„(co))„ is norm convergent for a.e.  weft.

(3) For each sequence (fin)„ in A, there exists a sequence (g„)n with g„ e

c°{fk \k > n} such that (g„(co))„ is weakly convergent for a.e.  weft.
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