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FOURIER INVERSION FOR PIECEWISE
SMOOTH FUNCTIONS IN SEVERAL VARIABLES

MARK A. PINSKY

(Communicated by George C. Papanicolaou)

0. Introduction and statement of results

Recently we have become aware [GP, PST] of the pointwise divergence of

the Fourier and Fourier-Bessel series of some piecewise constant functions in

three dimensions and higher. In this note we formulate these ideas in terms of

the Fourier transform. The main result gives precise necessary and sufficient

conditions for the pointwise convergence of the spherical partial sums of the

Fourier transform, as follows.

Theorem. Let f : R" —> R be a real-valued function that is zero for {x : |x| > a}

and is defined by a Ck+2 function inside the ball {x : |x| < a}, where k is

defined below. Denote the Fourier transform and its spherical partial sum by

Kri-T^n- I f(x)e-i{ft'x)dx,        fR(x):= f      f(p)e^^dp.
(2n)" 7R„ JM<R

(i)Ifn=l,2 then lim^Too fR(0) = /(0).
(ii) If n > 3, then lim*Too fR(0) = f(0) if and only if

f     fd<r = 0,  ...,   /      d-^j-da = Q,
J\x\=a J\x\=a °r

where k = k(n) := [\(n - 3)] and da is the surface measure on the sphere

of radius a. If j(f) := min{; : 0 < j < k, JM=a(dJf/drJ)do ^ 0}, then

limsup*Too *-"[/*(()) - f(0)] > 0, liminfR]ooR->[fR(0) - /(0)] < 0, where

v = i2(n-3)-j(f)>0.

(iii) If f(\) = F(\x\) for some F £ C2[0, a], then the Fourier inversion takes

place for any x ^ 0 and n > 1 :

(f{x)      if0<\x\jta,
hm fR(x) = 1
*Too [. I/(x)     |x| =fl,

without any supplementary conditions.

The above result allows one to treat the pointwise invertibility of Fourier

transforms without requiring that the Fourier transform be integrable.   The
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conditions are sharp, in the sense that if any one of the surface integrals is

nonzero, then the spherical partial sum diverges when R | oo at the indicated

rate.

1. Notation and definitions

The volume of the n -dimensional unit ball in R" is denoted vn =

n"/2/Y(l + n/2) while the (n - 1 )-dimensional measure of the unit sphere is

con-[ - nvn . These may be computed in spherical coordinates as

v„ = oj„-2[   f  r"~x sin"'2 ddrdO
Jo Jo

= ^zl [\in"-2edd.
n    Jo

Hence con-2f0n sin"~2 6 d0 = nv„ . We note, for future reference, that v„ =

(2n/n)v„-2 , n > 3 .
The spherical Bessel function in n dimensions [DM, p. 133] is defined by

Vx(r) = cosr,

[«e>rcos0sinn-2ede
Vn(r) = ^—-5-,        -oo < r < oo, n = 2, 3, ... .

fQnsin"-2dde

Proposition 1.1. The spherical Bessel function satisfies

(1.0) V„(-r) = V„(r);

(1.1) Vn" + ^-^V^+Vn = 0,    r/0,        Vn(0)=\;

(1-2) l/' = ^F„+2;

(1.3) Vn(r) = l-^ + - ,        r-0;

,^A^l,l^     \ 2"/2Y(n/2) 1 [      /       (« - l)?r\     „ (1\]

(L4) V"{r)= [V2Hrl-J2\ r(r--T^)+0{-r)\ '        rT°°-

Proof. The spherical Bessel functions are expressed in terms of the usual Bessel

functions /„ through the relation

Mr) = 2<-^r(f)%§g«,      r#0.

The relations (1.0)—(1.4) then follow from the corresponding properties of J„ ,

proved in [W].   D

In what follows we shall occasionally identify a function on [0, oo) with its

role as a radial function on R" . In particular, the independent variable can

be interpreted either as a vector or a scalar argument. This identification will

cause no confusion and will simplify the notation.
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The Dirichlet kernel in n dimensions is

DnR(z):=j^—i      e'Mdn
(2n)n JM<R

= 7TLr-/    I' e^zcos6sin"-2 6d0p"-x dp
(2n)"J0  Jo

Proposition 1.2. The Dirichlet kernel has the following properties:

(,5) nw-wy1^.,.,,.^,^!,

z^O,  n = 1, 2, ... , 7? too;

(1.6) D"R(z) = ^^D"R~2(z),        z^O,  « = 3,4,...;

(1.7) Z)£(-z) = 7)£(z),        «=1,2,....

Proof. Property (1.5) follows from the asymptotic property (1.4) of Bessel func-

tions. In particular, for n > 1, DR(z) is unbounded when 7? f oo. Property

(1.6) follows by applying the recurrence formula (1.2):

Property (1.7) is immediate from the definition of DR(z).   D

2. Proof of convergence/divergence at the origin

The spherical partial sum of the Fourier transform at x = 0 is

fR(0)= [     f(p)dp = -±-f     [    /(x)<r<<*-*> dpdx
J\H\<R VZ7r;    J\p\<R 7|x|<a

=  /      f(x)Df(-x)dx.
J\x\<a

In case n = 1, DR(x) = (sinRx)/nx and for any C1 function /

Urn [a*J^f(x)dx = f(0)
R\oo J_a     nX

from the one-dimensional theory of the Fourier integral.

In case n = 2, DR(x) = RJx(Rx)/2nx and the spherical partial sum is

/      f(x)D2R(x)dx= f RJi(Rz)(MJ)dz,
J\x\<a Jo

where Afz/ denotes the mean value on the sphere of radius z centered at

(0,0). Without loss of generality, we may suppose that /(0) = 0, since other-

wise we may subtract that nonzero value and deal with the improper integral

/ Rf (Rz) dz = J0(0) - Jo(Ra) -> 1,        7? t oo.
Jo
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We now integrate by parts, using Jq = -Ji , which reduces consideration to

/   m(z)RJx(Rz)dz = Jx(aR)m(a) - [ J0(az)m'(z)dz.
Jo Jo

The first term tends to zero by the asymptotics of Jo. To analyze the second,

note that by the asymptotics of Jo , it tends to zero for any power m'(z) = zp ,

p = 1,2,... . But the continuous function m! can be uniformly approximated

by a polynomial on the interval [0, a] from which the result follows for all

feCK
To study the convergence/divergence in higher dimensions, we use the prop-

erties of the Dirichlet kernel to write

/      f(x)D"R(x)dx = con-i I"(Mrf)D"R(r)r"~x dr
J\x\<a JO

= -^ [(M'f)rn~2Tr[Dn«2{r)]dr

= " °~{Maf)an-2DR-2(a)

+ (^[D"R2(r)lr[r"-2Mrf]dr.

Here we have used the notation Afr/ for the mean value of / over the

sphere of radius a centered at 0 e R" . This formula reduces the conver-

gence/divergence question to the behavior of the boundary term and that of a

radial function in two lower dimensions, namely,

r3~"Tr[r"~2Mrf] = rTrMrf+ {H ~ 2)Mrf-

If n = 3 the second term tends to f(0), by the one-dimensional theory of

Fourier transforms. If, in addition, Affl/ = 0, then the entire sum converges

to /(0). Otherwise, when Afa/ ^ 0, the first term is const x sin Ra , which

oscillates between nonzero limits when R | oo .

Similarly if n = 4 the second term tends to /(0) by the two-dimensional

case. If Afa/ = 0 then the spherical partial sum converges to f(0). Otherwise

the boundary term behaves as const xRx/2 sin(aR-n/4), R t oo , which proves

the divergence in this case.

If n > 4 we iterate the above procedure A^ times to obtain

where the successive terms are defined by

fo(r) = r"~2Mrf, f(r)=X-l-r(r"-2Mrf),  ..., fN(r)=(±fy   (r"~2Mrf).

If n is odd, we perform this N = (n-\)/2 times. The final integral converges

to f(0) by the one-dimensional theory. If all of the surface integrals are zero,

then it follows that all of the terms in the above summation are zero and we have
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proved the required convergence. Otherwise, let u be the first index for which

J\x\=adfJ/drJda ^ 0. From the asymptotic form (1.5) of the Dirichet kernel

we see that this sum consists of at most k-v nonzero terms, the first of which
is asymptotic to const ■x.DnR~2v+2(a), which behaves as r("-i-2")/2 t R t oo .

The remaining terms are estimated by 0(Rj), for j < (n - 3 - 2i/)/2. We have

proved that R~ufR(0) has the required fluctuation properties, in particular, the

failure of convergence.

If n is even, we perform this N = (n - 2)/2 times. The final integral

converges to /(0) by the two-dimensional theory. The remaining discussion is

exactly as in the case of n odd, as in the preceding paragraph. The proof is

complete.   □

3. Proof of convergence for radial functions

Given F(r), 0 < r < a, we define the n-dimensional Fourier transform by

P"^=rT^-ni     F(\x\)e~^^dx
(2^)" J\x\<a

= —K- I F(r)e-^rcos6r"-x sin"'2 6 drdd
(2*)" Jo

= WTn[nr)r^Vn(pr)dr.

Lemma 3.1. The n-dimensional Fourier transform satisfies

(i) Fn(p) = 0(l/p("+xV2), fi-oo;

(ii) Fn(p) = -F^2(p)/2np, p?0.

Proof. From the recurrence formula (1.2) for the spherical Bessel function, we
have

From the asymptotic behavior (1.4) of the spherical Bessel function, V„(pa)

— 0(1 /p("~xV2). The final integral can be integrated-by-parts once again and

the first result follows.
To prove the second, write
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With this established, we pass to the n -dimensional spherical partial sum

fR ~
nvn /   F„(p)p"  xVn(rp)dp

Jo

= ^± f F'n_2(p)p"~2Vn(rp)dp

= ^   Fn(R)R"'2Vn(rR)- JRFn.2(p)-^(p"~2Vn(rp))dp   .

When 7? | oo, the first term tends to zero for r ^ 0 by the above estimates.

The second term for r ^ 0 can be written using the recurrence formula (1.2)

as

The Bessel differential equation (1.1), written in the form

Tp (?n^TpVn-l{r^ + /"V-3^-2(r//) = °>

is then used to simplify the integrand to obtain

n(n-2)vn  fRfn_2{fi)fin-3Vn_2{rfi)d^
2n       J0

We have proved that for r ^ 0 and n = 3, 4, ...

\ivnnvn /   Fn(p)p"  xVn(rp)dp

= \im(n-2)vn_2 /    Fn_2(p)p" 3Vn_2(rp)dp .

This allows us to pass from convergence in dimension n - 2 to convergence

in dimension n . In case of one dimension, convergence follows from the one-

dimensional theory of the Fourier transform:

rR ~ rR ~
lim Di /    Vi(rp)Fx(p)dp = lim 2 /   cosprFi(p)dp
*Too       J0 «Too     J0

= {-[f(r + 0) + f(r-0)],        0<r<oc.

Applying the above argument gives convergence in dimensions 3, 5, 7,... . In

case of two dimensions, convergence follows from the theory of the Hankel

transform (for example, [S, p. 52])

rR ~ rR -.
lim 2v2 /    V2(pr)pF2(p)dp = lim 2n /   J0(pr)pF2(p)dp
«T°° Jo R1°°        Jo

= {[f(r + 0) + f(r-0)],        0<r<oc.

The above reduction now allows us to conclude convergence in dimensions

4,6,8,....    a
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4. Examples and observations

1. The simplest example of the above divergence phenomenon is for the
indicator function of the ball in R3. The Fourier transform is

?W = Ttt3 I      e-'{t''x)dx=^2- [\inrprdr
i2n)   J\x\<a 2* V Jo

1    facosap     sin a/A
= 2F2{—2-^3-j'        » + °-

The spherical partial sum is

yk(0) = 4re /   f(p)p2 dp =— /     a cos ap-—   dp.
Jo n Jo   L P    .

The second term is a convergent improper integral and the first integral is ex-

plicitly evaluated. Thus we have

2
fR(0) = 1 - -sin7ta + o(l),        7? Too.

n

Therefore we see explicitly that

limsup/«(0) = 1 + - ,        liminf/*(0) = 1 - - .

This is reminiscent of the Gibbs phenomenon for one-dimensional Fourier

series, where the graphs of the partial sums fill out an entire interval. In the

present situation we have the additional fact that the partial sums diverge at a

point. This is impossible for the one-dimensional Fourier series of a piecewise

smooth function.
2. The above example can be modified to demonstrate the failure of local-

ization in higher-dimensional Fourier analysis. Let the indicator function of

the annulus be defined by f(x) = 1 for a < \x\ < b, and f(x) = 0 elsewhere.

Clearly f(x) = 0 in the ball \x\ < a. But from the computations in the above

example, we have liminfRToo 7/<(0) < 0 < limsup^Too/j?(0); the spherical par-

tial sum at the origin oscillates indefinitely although the function is zero in a

neighborhood of the origin.
3. By going to higher dimensions we can produce a function that is zero in

a neighborhood of the origin and whose spherical partial sum is unbounded.

Indeed, following part (ii) of the main theorem, we can choose / so that the

unboundedness will be of the order 7?("~3)/2, R f oo in dimension n .
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