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Abstract. Let A be an integral domain with quotient field K and let \x\\(A)

be the ring of integer-valued polynomials on A : {P £ K[X]\P(A) C A} . We

study the rings A such that lnt(A) is a Prtifer domain; we know that A must

be an almost Dedekind domain with finite residue fields. First we state necessary

conditions, which allow us to prove a negative answer to a question of Gilmer.

On the other hand, it is enough that lnt{A) behaves well under localization;

i.e., for each maximal ideal m of A , lnt(A)m is the ring Int(.4m) of integer-

valued polynomials on Am . Thus we characterize this latter condition: it is

equivalent to an "immediate subextension property" of the domain A . Finally,

by considering domains A with the immediate subextension property that are

obtained as the integral closure of a Dedekind domain in an algebraic extension

of its quotient field, we construct several examples such that lnt(A) is Priifer.

Introduction

Throughout this paper A is assumed to be a domain with quotient field K,

and lnt(A) denotes the ring of integer-valued polynomials on A :

lnt(A) = {P£ K[X]\P(A) c A}.

The case where A is a ring of integers of an algebraic number field K was first

considered by Polya [13] and Ostrowski [12]. In this case we know that lnt(A)

is a non-Noetherian Priifer domain [1,4]. More generally, if ^4 is a Noetherian
domain, lnt(A) is a Priifer domain if and only if A is a Dedekind domain

with finite residue fields [5, Corollary 6.5].
In the general case, we have shown that if Int(^) is a Priifer domain, then

A is an almost Dedekind domain with finite residue fields [5, Proposition 6.3].

Recall that A is an almost Dedekind domain if Am is a rank-one discrete valu-

ation domain for each maximal ideal m of A [7]. The problem of determining

conditions under which Int(^l) is Priifer has not been resolved.

In [9] Gilmer shows that various classical examples of non-Noetherian almost

Dedekind domains do not have the finite residue fields property, and hence

Ynt(A) is not Priifer (as indeed he even proves that Int(^) = A[X]). However,

using a theorem of Krull [11, Theorem 3] concerning extensions of valuations,
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he gives a construction of non-Noetherian almost Dedekind domains with finite

residue fields, yielding both examples where Int(^) is Priifer and where it is

not. Then he states two open questions, the second being closely related to his

construction.

Q4. If A is an almost Dedekind domain such that {|^/m| |m £ Max(A)} is

bounded, is lnt(A) a Priifer domain?

Q5. Suppose Aq is a semilocal principal ideal domain with quotient field Tvo

and K is an infinite algebraic extension of Tvo that is expressed as the union of

a strictly ascending sequence {70} of finite algebraic extensions of Ko ■ Let Aj

be the integral closure of Ao in K, and A the union of the Aj. If Int(^) is a

Priifer domain, must there exist TV e N such that, for all i, j with N < i < j ,

lnt(At) c lnt(Aj) ?

Throughout this paper we will generally assume that A is an almost Dedekind

domain with finite residue fields and with quotient field K; we will try to find

necessary or sufficient conditions for lnt(A) to be Priifer.

In the first section we determine necessary conditions on every subfield K0

of K such that K/K0 is a countably generated algebraic extension. This allows

us to answer Q4 negatively, but raises a new question:

Q6 . Are these conditions sufficient?

In a second section we determine a sufficient condition: if A is an almost

Dedekind domain with finite residue fields and if, for each maximal ideal m of

A, lnt(A)m =lnt(Am) (we will say that lnt(A) behaves well under localization),

then Int(^) is a Priifer domain. This raises another question:

Q7. Is it necessary for Int(/1) to behave well under localization to be Priifer?

Next we state a necessary condition for good behaviour of localization called

the immediate subextension property.

In the fourth section we restrict ourselves to the case where there is a subfield

K0 of K such that K/K0 is a countably generated algebraic extension and

the intersection Ao = A n Tvo is a Dedekind domain with finite residue fields

and quotient field #0 . We show that in this case the immediate subextension

property is equivalent to good behaviour of localization.

In the following section we assume, moreover, that A is the integral closure

of Ao in K . We then show that Gilmer's condition in question Q5 is necessary

and sufficient for Int(^) to behave well under localization. We show also that

if Tv is a normal extension of Kq , then lnt(A) is Priifer if and only if A is

an almost Dedekind domain with finite residue fields.

In the sixth and last section we give examples using Gilmer's construction;

the first one provides a negative answer to Q4 , another shows that, when Ao is

not semilocal, the answer to Q5 may be negative, and yet another shows that

the answers to Q6 and Q7 are not both affirmative.

1. Necessary conditions

First, recall that

1.1 [5, Proposition 6.3]. If lnt(A) is a Priifer domain, then A is an almost

Dedekind domain with finite residue fields.



INTEGER-VALUED POLYNOMIALS AND PRUFER DOMAINS 1063

If m is a maximal ideal of an almost Dedekind domain A , then Am is the

ring of a rank-one discrete valuation vm . If Tvo is a subfield of Tv such that

K/Ko is a countably generated algebraic extension, then the restriction of vm

to Tvo is a rank-one discrete valuation and the valuation ring of this restriction

vm\Ko is AmDKo. Let em(K/Ko) be the ramification index of vm over wm|Tvo.

Similar to Gilmer's residue field condition in question Q4 :

(a)   {\A/va\ |m £ Max(^4)} is bounded,
we propose the following ramification condition:

(ft) For any subfield Tvo of K such that K/Kq is a countably generated

algebraic extension, {em(K/Ko)\m £Max(A)} is bounded.

Neither condition is necessary in such a global version: for the first one

consider A = Z and observe that Int(Z) is Priifer; for the second one see

Example 6.6. However, the next theorem shows that both weaker local versions

are necessary; but each of them separately is not sufficient, and this will allow

us to answer Gilmer's question Q4 negatively.

1.2. Theorem. Suppose lnt(A) is a Priifer domain. Let Ko be a subfield of

K such that K/Ko is a countably generated algebraic extension. Then for each

maximal ideal m of A :

(a) {|^4/n|   |neMax(,4), vn\Ko = vm\Ko} is bounded, and

(b) {e„(K/Ko)\n £ Max(A), vn\K0 = vm\K0} is bounded.

Condition (a) is also given by Gilmer [9, Theorem 13]. First let us recall two

results:

1.3 [3, Corollary, p. 303]. For each maximal ideal m of A , lnt(A)m is con-

tained in the ring Int(^m) of integer-valued polynomials on Am .

1.4 ([2, Proposition 2] or [4, Lemma 1]). Let V be the ring of a rank-one

discrete valuation v with finite residue field of cardinal q, and let P be an

integer-valued polynomial on V of degree d > 0. Then v(P) > -d/(q - 1),

where v(P) denotes the infimum of the values of the coefficients of P.

In fact, Lemma 1 of [4] shows that the .4-module lnt(A) is generated by

polynomials Qd(X), where deg(Qd) = d and v(Qd) = ^s>o[d/qs] ■ Assertion

1.4 follows from the inequality i2s>o\.d/cis] < Y,s>o(d/qs) = d/(q-\), for each

d>0.

1.5. Lemma. Let A be an almost Dedekind domain and let Ko be a subfield

of K such that K/Kq is an algebraic extension. Suppose there exists a rank-one

discrete valuation v0 of K0 such that one of the following conditions fails:

(a) {|j4/m|   \m£Max(A), vm\K0 = v0} is bounded.

(b) {em(K/K0)\m £ Max(A), vm\K0 = v0} is bounded.

Then Int(^) n TC^An is contained in Vq[X] , where Vq is the valuation ring of

v0.

Proof. Let Q be a nonconstant polynomial belonging to lnt(A) n K0[X], let d

be its degree, and choose a maximal ideal m of A such that vm\Ko = v0 and

either \A/m\ > d or em(K/Ko) > d (according to the failing condition). Since

Q(A)cA,then Q(Am) c Am (1.3); we will show that vm(Q)>0.
If \A/m\ is infinite, then clearly Q is in /!„,[.¥] [3, Proposition 5, Corollary

2]; if not we let q = \A/m\.
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If \A/m\ >d,then vm(Q) > -(d/q- 1) > -1 (1.4), hence «m(Q)>0.
If em(K/K0) > d, then vm(Q) > -(d/q - 1) > -d, but Q belongs to K0[X]

and vm(Q) is a multiple of em(K/K0), hence again vm(Q) > 0. In any case,

Q belongs to Am[X] n tf0M = F0[X].

1.6. Lemma. L^ A be an almost Dedekind domain and let Ko be a subfield of

K such that K/Ko is a countably generated algebraic extension. Suppose there

exists a maximal ideal m of A such that one of the following conditions fails:

(a) {\A/n\   |neMax(^), ^n|Ar0 = ^m|AT0} is bounded.

(b) {en(K/Ko)\n 6 Max(^), vn\K0 = vm\K0} is bounded.

Then there exists a maximal ideal n of A such that lnt(A) is contained in

An[X].

Proof. Let {Kj} be an ascending sequence of finite extensions of K0 such that

\Jj Kj = K. Let no = m and let vo be the restriction to Ko of the valuation

associated to m. For each j > 0 we define a maximal ideal n; of A in

the following way: (i) one of the conditions (a) or (b) fails with respect to

the extension 7v/7v; and the ideal n,; (ii) W/|A)_i = Vj-X where Vj denotes

the restriction to Kj of the valuation associated to n,. We can define such a

sequence of maximal ideals n; since, for each j > 0, there are only finitely

many valuations of Kj extending Vj-\.

Let v be the rank-one valuation of K whose restriction to each Kj is Vj.

Let V be the valuation ring of v and Vj the valuation ring of Vj. By construc-

tion Af]Kj is contained in Vj and A = {Jj(AnKj) is contained in (J; Vj = V.

Hence there is a maximal ideal n of A such that An = V since A is an al-

most Dedekind domain. Now let Q be any element of Int(yt) and let j be an

integer such that Q belongs to Kj[X]. Lemma 1.5 implies that Q belongs to

Vj[X] and hence Q belongs to A, [AT.

Proof of Theorem 1.2. If lnt(A) is Priifer, then A is an almost Dedekind do-

main (1.1). Suppose there exists a subfield Tv0 of K such that K/Ko is a

countably generated algebraic extension and there exists a maximal ideal m of

A such that one of conditions (a) or (b) fails. Then lnt(A) is contained in

A„[X] for some maximal ideal n of A (Lemma 1.6). Every overring of the

Priifer domain lnt(A) is Priifer; but An[X] is not Priifer since A„ is not a

field. This is a contradiction.

Note that if conditions (a) and (b) of Theorem 1.2 are satisfied for a subfield

7Q) of K, then they are also satisfied for any subfield Tvi of K containing K0 .

In the last paragraph we give examples of almost Dedekind domains A , which

are integral extensions of the discrete valuation domain Zp (with p = 2); hence

Ko = Q is the smallest subfield of K . In Example 6.2, condition (a) is satisfied

(and even condition (a) of Gilmer), but not (b); in Example 6.3 condition (b)

is satisfied (and even condition (/?)) but not (a). Therefore the domains lnt(A)

are not Priifer. Thus neither condition (a) nor (B) separately is sufficient, and

in particular,

1.7. Corollary. The answer to question Q4 is negative.

1.8. Question Q6 . Let A be an almost Dedekind domain with quotient field

K and K0 a subfield of K such that Tv"/Tv0 is an infinite countably generated
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algebraic extension. If for each maximal ideal m of A :

(a) {\A/n\   \n £ Max(A), v„\K0 = vm\Ko} is bounded, and

(b) {en(K/K0)\n £ Max(A), vn\K0 = vm\K0} is bounded,

is lnt(A) a Priifer domain?

2. Localization

Now, in order to get sufficient conditions, we consider localization properties.

2.1. Theorem. Let A be an almost Dedekind domain with finite residue fields.

If, for each maximal ideal m of A, Int(.4)m = lnt(Am), then lnt(A) is a Priifer

domain.

Proof. We have to show that, for each maximal ideal ^3 of Int(^), lnt(A)<$

is a valuation domain. If <p n A is a maximal ideal m of A , then Int(^4)<p =

(lnt(A)m)<$m and it is enough to show that Int(^)m is a Priifer domain. If

tynA = (0), then, for any maximal ideal m of A , Int(^4)<p = (Int(^)m)<p„ and

it is also enough to show that Int(^4)m is a Priifer domain. This results from

2.2 below, since, for each maximal ideal m of A, Am is a rank-one discrete

valuation domain with finite residue field and lnt(A)m = Int(^4m) is Priifer.

2.2 [4, Propositions 1 and 2]. If V is a rank-one discrete valuation domain

with finite residue field and with quotient field K, then:

(i) the prime ideals of Int(F) lying over the ideal (0) of V are the ideals
Ws - {Q e Int(K)|Q = S-R, 7? € K[X]} where S is an irreducible polynomial

ofK[X};
(ii) the prime ideals of Int(F) lying over the maximal ideal m of V are

the maximal ideals ma(V) = {Q £ lnt(V)\Q(a) £ mV*}, where V* is the

completion of V and a is any element of V*;
(iii) the localization of Int( V) with respect to %■ is the valuation ring K[X\S)

and the localization of Int(F) with respect to ma(V) is the valuation ring Va =

{R £ K(X)\R(a) £ V}.

We will say that Int(^4) behaves well under localization if the condition of

Theorem 2.1 is fulfilled. Note that it is always the case when A is Noetherian

[3, p. 303]; this yields the well-known fact:

2.3 [5, Corollary 6.5]. If A is Noetherian, lnt(A) is Priifer if and only if A is
a Dedekind domain with finite residue fields.

We know that Int(^) does not always behave well under localization when

A is an almost Dedekind domain with finite residue fields [9, Theorem 13].

Conversely we ask:

2.4. Question Q7. For Ynt(A) to be Priifer, is it necessary that it behaves well

under localization?

2.5. Remark. If lnt(A) is a Priifer domain, then, for each maximal ideal m

of A and each element a of the completion A^ of Am , the localization of

Int(^) with respect to ma = {Q £ lnt(A)\Q(a) £ nvlm} is the valuation domain

Va = {R £ K(X)\R(a) £A*m}. To see this, note that the domain Int(^) is con-

tained in Int(.4m) (1.3) and the ideal mQ is the intersection of Int(^t) with the

ideal (m^m)a of Int(^m). If Int(^) is a Priifer domain, then the localization



1066 J.-L. CHABERT

of Int(A) with respect to ma is a valuation domain. This latter domain is con-

tained in the valuation domain Va and its maximal ideal is contained in the

maximal ideal of Va . Thus these valuation domains coincide. So when Int(^)

is Priifer, every localization of Int(^m) is a localization of lnt(A). Thus an

equivalent form of Q7 asks whether every prime ideal of Int(^) lying over a

maximal ideal m of A is an ideal m„ .

3. Immediate subextension property

Now we state a necessary condition for Int(^4) to behave well under localiza-

tion. Recall that the prime field of a field K is the smallest subfield contained

in Tv ; it is isomorphic to Q or to Fp .

3.1. Proposition. Let m be a maximal ideal of A such that Am is a rank-one

discrete valuation domain with finite residue field. If lnt(A)m = Int(^4m), then

there exists a subfield Kx  of K, finitely generated over the prime field of K,

such that, if Ax = A n Kx and mx =mC\Kx, then for each maximal ideal n of

A lying over mx,

nA„=miAn   and   A/n = Ai/mx.

Proof. We first construct the field Kx. Let a0, ... , a9_i be a complete set of
residues of m in A and let t be a local parameter of v , which belongs to A .

The polynomial P = (X - ao) ■ ■ ■ (X - aq-X)/t belongs to lnt(Am) and also to

lnt(A)m by hypothesis. Let 5 be an element of A\m such that sP belongs

to lnt(A) and define 7m to be the subfield of K generated over Q or Fp by

ao, ... , aq-i , t , and 5.

If we set Ai = AP\Ki and mi = mnTv-! , then Ai/mi = A/m and tA\ C mi .
Let n be a maximal ideal of A such that nV\ Ai = mn Ax = nti . Let a be

any element of A . Since sP(a) belongs to A , stP(a) = s(a -ao)-- -(a- aq-1)

belongs to Men. The element s of A1 does not belong to m, hence it does

not belong to n, and there exists i such that a - ai belongs to n. There-

fore A/n = Ai/mi . Let b be any element of n. Since sP(b + ao) is in A ,

stP(b + ao) = sb(b + a0 - «i) • • • (b + a0 - aq_x) is in tA ; but s(b + a0 - ax)
■■ ■ (b + ao-aq-i) is in the multiplicative system A\n, hence b belongs to tAn.

Therefore m|/f„ contains n and mxAn = nA„.

Recall that a valuation v of K is essential for the domain A if the valuation

ring of v is the localization of A with respect to a prime ideal m . Recall also

that an extension v of a valuation vx of a field K{ is an immediate extension

if v and Vi have the same value group and same residue field; in this case we

will say that v is immediate over Kx .

If An is the ring of a valuation v , letting vx be the restriction of v to K\ ,

the conditions nA„ = mxA„ and A/n = Ai/mi of Proposition 3.1 imply that

v is immediate over Tvi . We then make the following definitions:

3.2. Definitions. Let A be a Priifer domain with quotient field Tv .

(i) A valuation v of Tv , which is essential for A, is said to be totally A-

immediate over a subextension Tvi if, letting vx be the restriction of v to TCi ,

each extension w of v{  to Tv , which is essential for A, is immediate over

(ii) The domain A is said to have the immediate subextension property over

a subfield Tvo of K if, for each valuation v , which is essential for A , there
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exists a subextension Tvi of K finitely generated over Kq, over which v is

totally ^-immediate.

If the valuation v of K is totally yl-immediate over a subfield Tvo > then v

is totally ^-immediate over every subfield 7^ containing Tv0, and, if A has

the immediate subextension property over a subfield Tv0 of K, then A has the

immediate subextension property over every subfield Tvi of K containing Tv0 .

3.3. Theorem. Suppose A is an almost Dedekind domain with finite residue

fields. If for each maximal ideal m of A, Int(^)m = lnt(Am), then A has the

immediate subextension property over the prime field of K.

The theorem results from Proposition 3.1.

4. Partial converse

We now restrict ourselves to the case where there is a subfield Tv0 of Tv such

that K/Ko is a countably generated algebraic extension and the intersection

Ao = A n Tio is a Dedekind domain with finite residue fields and quotient field

Tv"o . We will show that the immediate subextension property is then equivalent

to good behaviour of localization; we start with a lemma under somewhat more

general conditions.

4.1. Lemma. Let A be a Priifer domain with quotient field K. Suppose that K0

is a subfield of K such that K/K0 Is a countably generated algebraic extension.

The following assertions are equivalent:

(i) A has the immediate subextension property over Ko .

(ii) For each valuation Vo of Kq , which is the restriction of a valuation essen-

tial for A, there exists a finite extension K' of K0 contained in K such that

each extension of v0 to K, which is essential for A, is immediate over K'.

Proof. It is clear that (ii) implies (i). Now suppose (ii) does not hold and write

Tv as the union of an ascending sequence of finite extensions K„ of Tvo ■ Then

(ii) does not hold for at least one extension vi of vo to Tvi , which is the

restriction of an essential valuation for A ; to see this, assume to the contrary

that, for each extension w of vq to Tv i , which is the restriction of an essential

valuation for A , there is an integer j(w) such that each extension of w to K ,

essential for A , is immediate over Kj(w); then taking j to be the supremum

of these integers j(w) (since there are only finitely many extensions of vq to

Ti"i), each extension of Vo to K, essential for A , would be immediate over

Kj. By induction it is then possible to construct a sequence (v„) of valuations,

v„ extending vn-i to Kn , such that there exists an extension w„ of v„ to K ,

essential for A, which is not an immediate extension of v„ . This sequence

defines a valuation v of Tv , extending vo, and v is essential for A . Indeed

if a is an element of A, then it belongs to a field Tv„ , and by construction

v(a) = vn(a) = wn(a) > 0. Hence the ring of v contains A. Now for each

n , v is not totally ^-immediate over Kn , hence it is not totally ^-immediate

over any finite extension of Tvo •

4.2. Remark. If A is an almost Dedekind domain, it follows from Lemma 4.1

that the immediate subextension property over a subfield Tv0 of K such that

K/Ko is a countably generated algebraic extension is stronger than conditions

(a) and (b) of Theorem 1.2.
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We are now ready for the main theorem of this section.

4.3. Theorem. Let A be an almost Dedekind domain with finite residue fields.

If the quotient field K of A is a countably generated algebraic extension of a

field Ko and if the ring A0 = A n 7v0 is a Dedekind domain with finite residue

fields and with quotient field K0, then the following conditions are equivalent:
(i) For each maximal ideal m of A, Int(y4)m = lnt(Am).

(ii) A has the immediate subextension property over K0 .

(iii) A has the immediate subextension property over the prime field of K.

Proof. Theorem 3.3 shows that (i) implies (iii), and it is trivial that (iii) im-

plies (ii). Conversely, if (ii) holds, let m be a maximal ideal of A and P a

polynomial in Int(.4m). We have to show that P belongs to (lnt(A))m , i.e.,

that P = Q/s, where 5 belongs to A\m and Q to lnt(A).
Let Tv"0 be a finite extension of Ko such that P belongs to K°[X]. Let A0

be the domain A n K° ; A0 is a Dedekind domain since it contains the integral

closure of Ao in Tv°, which is a Dedekind domain. Let d be a nonzero

element of A0 such that the coefficients of dP are in A0. Then d belongs

to only a finite number of maximal ideals pk of A0 . If no pk is contracted

from a maximal ideal of A , then d is a unit of A and the desired conclusion

holds. For each pk lying under some maximal ideal of A, let K(pk) be a

finite extension of K° such that each extension of the valuation associated to

pk in K° to a valuation on K that is essential for A is immediate over K(pk)

(Lemma 4.1). Define K* to be the finite extension of Tv° generated by these

fields K(pk).
Let A* be the Dedekind domain A n K* and let m* be the maximal ideal

m n K* of A*. The localization of A* with respect to m* is the intersection

of Am with K*. By hypothesis P(Am) is contained in Am so that P(A*m.) is

contained in Am n K* = (A*)m. and P belongs to lnt(A^.). But Int(,4m.) =

lnt(A*)m. , because A* is Noetherian [3, Corollary 5, p. 303]; hence P = Q/s,

where s belongs to A*\m* and the polynomial Q is such that Q(A*) c A*.

It remains to prove that Q(A) c A, or equivalently, that for each maximal

ideal n of A, Q(A) c An :
If d $. n, then dQ = dsP has its coefficients in A , and clearly Q(A) c A„.
If d £ n, then let n* = nfl A*. By construction nA„ = n*A„ and A/n =

A*/n*. From Q(A*) c A* it follows that Q(A*.) C A*„. [3], and this implies
that Q(An) c An (Proposition 4.4 below).

4.4. Proposition [6, Proposition 5.5]. Let R be a Noetherian local domain with

maximal ideal m and quotient field K. Let 7?o be a local subring of R with

maximal ideal mo . If moT? = m and R/m = Ro/m-o > then

Int(Tv) = {P£ K[X]\P(Ro) C 7?}.

Note that, in order to prove Theorem 4.3, we only use the previous result in

the case where 7?o is a discrete valuation domain with finite residue field. In this

case, T< is an immediate extension of 7?0 and there is a basis of the Tv-module

Int(T?) whose elements are polynomials belonging to Int(T?0) [4, Lemma 1],

and hence Int(T?0) C Int(T?).
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Thus, with the hypothesis of Theorem 4.3, we have proved the following

implications:

Int(yl) behaves well      eo-^m A has the immediate
,       , ,.      .. Theorem 4.3 ,

under localization |       <—        | subextension property

Theorem 2.1 || Q7? }| Remark 4.2

lnt(A) is Priifer eo-^m        conditions (a) and (b)

4.5. Corollary. Let A be an integrally closed domain such that the quotient

field K of A is a countably generated algebraic extension of a field KQ and

the ring Ao = An K0 is a Dedekind domain with finite residue fields and with

quotient field K0.IfA has the immediate subextension property over K0, then:

(i) A is an almost Dedekind domain with finite residue fields.

(ii) For each maximal ideal m of A, lnt(A)m = lnt(Am).

(iii) lnt(A) is a Priifer domain.

Proof. In view of Theorem 4.3 and the diagram above, it suffices to prove (i).

Note that A is a Priifer domain since A is an overring of the integral closure

of Ao in K , which is a Priifer domain. The immediate subextension property

then implies that A is an almost Dedekind domain with finite residue fields.

5. Integral closure of a Dedekind domain

Let Ao be a Dedekind domain with finite residue fields, Tvo the quotient

field of Ao, K a countably generated algebraic extension of Tvo > and A the

integral closure of A0 in K. Under these hypotheses A is a Priifer domain,

and if A has the immediate subextension property, it is an almost Dedekind

domain with finite residue fields.

5.1. Proposition. Let A0 be a Dedekind domain with quotient field Ko, K a
countably generated algebraic extension of Ko, and A the integral closure of Ao

in K. Suppose that A is an almost Dedekind domain with finite residue fields.

The following conditions are equivalent:

(i) For each maximal ideal xn of A, lnt(A)m = lnt(Am).

(ii) A has the immediate subextension property over Ko ■

(iii) For each valuation v0 of K0, which is essential for A0, there exists a

finite extension Ki  of K0 such that each extension v of v0 to K, which is

essential for A , is immediate over Kx.

Proof. The equivalence (i) <-> (ii) results from Theorem 4.3. Lemma 4.1 shows

the equivalence (ii) «-> (iii) since each valuation v of K , which is essential for

A , is the extension of—and has for restriction—a valuation i>0 of Tv0 , which

is essential for Ao .

With regard to localization, the following corollary provides an affirmative

answer to a question that is analogous to Gilmer's question Q5 quoted in the

introduction.

5.2. Corollary. Let Ao be a semilocal principal ideal domain with quotient field

Kq . Let K be the union of an ascending sequence of finite algebraic extensions
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K„ of Ko. Let A be the integral closure of Ao in K and, for each n, let

An = A n K„ . If A is an almost Dedekind domain with finite residue fields, the

following conditions are equivalent:

(i) For each maximal ideal xn of A, Int(^)m = lnt(Am).

(ii)  There exists n such that every valuation of K, which is essential for A ,

is immediate over K„ .

(iii)  There exists n such that for all i, j with n < i < j, lnt(Ai) c Int(Aj) c
Int(^).

Proof, (i) —> (ii) results from Proposition 5.1 since Ao is semilocal.
(ii) -> (iii) Let n be an integer as in condition (ii) and let i and j be

such that n < i < j. Let q be a maximal ideal of Aj and let p = q n At.

The valuation associated with the ring (Aj)^ is an immediate extension of the

valuation associated with the ring (At)v ; then

Int(^) c lnt((Ai)p) c Int((^)q) = Int(^),

for each maximal ideal q of Aj (Proposition 4.4). Therefore lnt(Aj) c Int(^).

Moreover, lnt(Ai) c Int(yl); let Q be an element of Int(^,). For each

element a of A, there exists j > i such that a belongs to Aj; thus Q(a)

belongs to Aj since lnt(Aj) c lnt(Aj), and Q is in Int(^4).

(iii) —► (i) Let m be a maximal ideal of A and let Q be any element of

IntL4m). Let Kj be an extension of K0 such that Q belongs to Kt[X] and

let p be the ideal m n A,■. By hypothesis Q(Am) is contained in Am , so that

Q((Ai)p) c Am nKj = (Ai)p and Q belongs to Int((^,)p) = Int(^,)p. Hence

Q = P/s, where 5 is an element of Aj\p and P belongs to IntL4,-). Since

lnt(Aj) is contained in Int(^4), Q belongs to lnt(A)m .

If K is a normal algebraic extension of K0, the four properties in the dia-
gram at the end of §4 are satisfied as soon as A is an almost Dedekind domain

with finite residue fields and we have a characterization of when lnt(A) is a

Priifer domain:

5.3. Theorem. Let Ao be a Dedekind domain with finite residue fields and with

quotient field K0. Let K be a countably generated normal algebraic extension

of Ko and let A be the integral closure of Aq in K. The following conditions

are equivalent:

(i) A is an almost Dedekind domain with finite residue fields.

(ii) A has the immediate subextension property over Ko.

(iii) lnt(A) is a Priifer domain.
(iv) For each maximal ideal xn of A:

(a) {M/n|   |n £ Max(^), vn\Ko = vm\Ko} is bounded, and

(b) {en(K/Ko)\n £ Max(A), vn\K0 = vm\K0} is bounded.

If Ao is semilocal, the equivalence of (i) and (iii) is also proved by Gilmer

[9, Theorem 12].

Proof. Implications (ii) -> (iii) —► (iv) result from Theorems 2.1 and 1.2; (iv)

—> (i) is immediate. Let us prove (i) —> (ii). Let v be a valuation of K,

which is essential for A . Since v is discrete and has a finite residue field, there

exists a finite extension A^i  of Ti"o such that v is an immediate extension of
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its restriction Vi to K{ (Tvi is generated by a complete set of residues and by

a local parameter of d). As the extension 7v/7vi is normal, every extension

of Vi to Tv is also an immediate extension and v is totally /1-immediate over

Kx.

6. COUNTEREXAMPLES

In order to answer some questions (and in particular Gilmer's question Q4)

and shed some light on the others, we will give several examples. We construct

rings of algebraic numbers, which are integral closures of Z or of localizations

of Z in algebraic extensions of Q. As Gilmer does, we use Hasse's existence

theorem about prime ideal decomposition in algebraic number fields.

6.1 (Hasse [10]). Let Tvo be an algebraic number field and let mi,..., ms

be prime ideals of the ring A0 of algebraic integers of Tv0. Suppose given,

for each i = I, ... , s, 2r(i) positive integers e\, and fj (j = 1, ... , r(i))

in such a way that J2i<j<r(i)eijfu = n (f°r every / = 1, ... , s). Then

there exists an algebraic extension Tv of 7v0 having degree n such that each

prime ideal m, decomposes in the field Tv as a product m, = riioom ^y >

where the 9Jl,j are prime ideals of the ring A of algebraic integers of K and

[A/Tlij : Ao/xm] = fj .
In every example that we are going to construct, K is the union of a strictly

ascending sequence of finite extensions Kn of Tv0 = Q. We define every exten-

sion K„/Kn-X with Hasse's existence theorem, where e,j = 1 or fj = 1.

6.2. Example. Let v0 be the 2-adic valuation of An = Q and A0 = Z(2) the

valuation ring of v0. We define K„ by induction on n : K„ is an extension

of Kn-X such that (i) [K„ : Kn-X] = n + 2; (ii) every valuation of Kn-X, which

is ramified over the valuation vq of Q has only immediate extensions to Kn

(e = 1, / = 1); (iii) the valuation vn-X of Tv„_i, which is not ramified over Vo

has two extensions to K„ ; one of these is totally ramified (e = [Kn : Kn-X] - 1 ,

/ = 1), and the other, denoted by v„ , is immediate (e = 1, / = 1).

Let Tv be the union of the extensions Tv„ and let A be the integral closure

of Ao = Z(2) in K; A is also the intersection of the valuation rings of the

extensions of vq to K.

A tree may represent the extensions of valuations as follows: a single line rep-

resents an immediate extension, a multiple line represents a ramified extension

(as depicted in the figure).

K2 0 0 0 0 0 xv2

^<\ /^      *=\ /
K\ Ox / vl

v- e = 2 ^^   -^
H v0
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A valuation of K is a branch of the tree; each extension of Vo has relative

degree one and a finite ramification index. So A is an almost Dedekind domain

and each residue field of A is isomorphic to F2, while {<;m(2)|m £ Max(A)} =

N*. The condition (b) of Theorem 1.2 does not hold and we answer Gilmer's

question Q4 negatively:

lnt(A) is not a Priifer domain and A is an almost Dedekind

domain such that {|^4/m|   |m £ Max(^4)} = {2} is bounded.

6.3. Example [9, Gilmer's Example 14]. We reverse the roles of e and / in

Example 6.2: every valuation of Tv„_i whose residue field is not isomorphic to

F2 has only immediate extensions to K„ (e = 1, / = 1) and the valuation

vn-i of Tv„_! whose residue field is isomorphic to F2 has two extensions

to K„; one of these is such that e = 1 and / = [Kn : Tv„_i] - 1, and the

other, denoted by v„ , is immediate. Then A is an almost Dedekind domain

with finite residue fields. For each maximal ideal m of A, vm(2) = 1 , while

{\A/m\ |m £ Max(^)} = {2n\n £ N*}. Condition (a) of Theorem 1.2 is not

fulfilled and Int(^l) is not a Priifer domain, but condition (b) is satisfied. Thus

the condition that {vm(xn n A0)\xn £ Max(^)} is bounded is not sufficient for

lnt(A) to be Priifer.

Now let us show that the answer to question Q5 would be negative if we did

not hypothesize Ao to be a semilocal domain.

6.4. Example. Let Kq = Q and Aq = Z. Letting p„ be the «th prime num-

ber, we define Tv„ by induction on n ; Kn is an extension of Tv„_j such that:

(i) [K„ : AT„_i] = 2; (ii) every valuation of Tv„_i , which is an extension of the

2-adic valuation or of the 3-adic valuation or... , the /?„_i-adic valuation of Q

is completely decomposed (has only immediate extensions to Tv„); (iii) every

valuation of Tv„_i , which is an extension of the /?„-adic valuation of Q, is to-

tally ramified (has only one extension to Tv„ with e = [K„ : Kn-X] and f = \).

[Note that for each step we only consider a finite number of valuations.]

Let K be the union of the Tv„ and A the integral closure of Z in Tv . The

ring A has the immediate subextension property: for every n , each extension

of the p„-adic valuation is immediate over Kn . Hence, for each maximal ideal

m of A, Int(yl)m = lnt(Am) and Int(^) is Priifer (Corollary 4.5). However,

for i < j, each extension to Tv; of the Pj-adic valuation is ramified over Tv,,

hence Int(^,) is not included in lnt(Aj) ([6, Proposition 5.3] or [9, Proposition

11]).

Let us show now that conditions (a) and (b) of Theorem 1.2 do not imply

that lnt(A) behaves well under localization.

6.5. Example. A slightly different version of Example 6.2: [Tv„ : Kn-i] = 3.

Then A is an almost Dedekind domain with finite residue fields since every

extension of the 2-adic valuation vq has relative degree one and ramification

index two, except the valuation v , whose restriction to each Tv„ is vn and

which is an immediate extension of Vo. But, for each n, v\K„ = v„ has

ramified extensions to K, and the immediate extension v of v0 contradicts

the immediate subextension property.
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Hence Int(^) does not behave well under localization although conditions

(a) and (b) of Theorem 1.2 are fulfilled. We do not know if lnt(A) is Priifer,
but if lnt(A) is Priifer the answer to Q7 is negative and if Int(^) is not Priifer

the answer to Q6 is negative.

We said that Int(Z) is Priifer although {|Z/m||m e Max(Z)} is not

bounded; let us construct now an example A such that Int(^) is Priifer and

{vm(m n Z)|m € Max(^)} is not bounded.

6.6. Example. A slightly different version of Example 6.4: [K„ : Kn-i] = n+2.
The ring A has the immediate subextension property, hence Int(^f) is Priifer

(Corollary 4.5) and conditions (a) and (b) of Theorem 1.2 are fulfilled, but

condition (/?) on ramification index is not.
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