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ON POINCARE TYPE INTEGRAL INEQUALITIES

WING-SUM CHEUNG

(Communicated by Andrew Bruckner)

Abstract. In this paper some new integral inequalities of the Poincare type, on

a region of rectangular dimensions, involving many functions in many variables

are obtained. These in turn can be used to serve as generators of other integral

inequalities.

1. Introduction

The multidimensional integral inequality [4, 7]

(1) X0 / u2 dx < / | v u\2dx ,
Jii Ja

where fi is a bounded region in E2 or I3, u £ C'(fi), u = 0 on <9fi, and

Ao is the smallest eigenvalue of the problem

J Au + Xu = 0   in fi,

1 u = 0 on dfi ,

is known as Poincare's inequality. Since (1) plays a fundamental role in the

theory as well as applications of partial differential equations, considerable at-
tention and effort have been put on its generalizations to various aspects. For

details one is referred to Beckenbach and Bellman [1], Hardy, Littlewood, and
Polya [3], Mitrinovic [7], Nirenberg [8], and, more recently, Horgan [4-6], Pach-
patte [9, 10], and Cheung [2]. It is the purpose of this paper to obtain some

new generalizations of inequality (1) in the context involving many functions in

many variables by methods which are rather elementary compared to the usual

technique of considering certain eigenvalue problems.

2. Notation and preliminaries

Throughout this paper, let m > 2 and n > 1 be any two fixed integers.

Let a, j? be indices running from 1 to m, and i, j from 1 to n. Let

fi = n"=i[ai> bf] c E" be a fixed rectangular region. A general point in fi
will be denoted by x = (xx, ... , x„), and the volume form will be denoted by

dx = dxx ■ ■ ■ dx„ . Let C0' (fi) be the collection of all real-valued continuously
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differentiable functions on fi which vanish on the boundary <9fi of fi. As

usual, partial derivatives of / 6 C0X (fi) will be denoted by fi .
Since all summations and products appearing in this paper will be either over

a, fi or i, j, and hence should be from 1 to m or from 1 to n , respectively,

for the sake of simplicity we shall drop the terminals of the summation sign £Z

and the product sign ] [ unless confusion may occur. Furthermore, as usual,

integrals of the form JaF(x) dx will be abbreviated by JQ F .
The following basic inequalities will be needed in the sequel.

Inequality A [7]. For any pa > 0 with £a l/pQ = 1, and for any ca > 0,

a a

Inequality B [3]. For any qa > 0 and ca > 0,

a a

where q := Y,p Qp ■

Inequality C [7]. For any r, > 0 and s > 0,

[YrX <c(s,n)Yrsi ,
^   i       ' i

where
,      .      f ns~x   ifs>l,

C(5'") = {l        ifO<*<l.

Inequality D (Generalization of Holder's inequality). For any pa > 0 with

£Q l/pQ = 1 and any ga £ .S^°(fi), we have T[a ga £^fx(Q) and

/nnu^n(/QM-)""-

Inequality D is a simple generalization of the classical Holder's inequality

to the case involving more than two functions, which can be proved easily by

induction.

3. Main results

Let M - max{bj - a,: i = 1,... , n}.

Theorem 1. For any fa £ C0X(Q)  and any real numbers pa > 2 satisfying

Theorem 2. For any fa £ Cd (fi)  and any real numbers qa > 0 with q :=
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Note that these results generalize the existing Poincare type integral inequal-

ities [6, 7, 9, 10] in the literature. To prove these, we first observe the following

Lemma 1. If f £ C0' (fi), then, for any t £ fi,

W)l - 2n X'J    '^''" ' U~x' ""tM " " ' 'n)' dUi '

Proof. For each / we have

fit) = /   fi(h > • • • > U-\, Ui, ti+i, ... ,tn)dUi
Ja,

and also

f(t) = - /   fi(h , ■■■ , U-i, ut, ti+x, ... ,t„)dUi .
Jti

Taking their absolute values and summing with respect to i, we then have

2n\f(t)\ <Y       \f'(tl' • • ■ ' ''->' "''' ''+>' • • • ' '»)l dUi
i   Jai

and thus the assertion follows.   Q.E.D.

Proof of Theorem 1. By Inequality A, Lemma 1, and Inequality C, we have

n i-noi < E yjnt)r < Y ya [£ E f wi H'°

Since pa > 1, we have c(pQ, n) = nPa~x for all a and so, by Holder's inequal-

ity,

nire>i < E £ Qf e(/>i *».)"

sEiG)"^-'E£wT-^-
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Therefore,

I IT irwi* < E £ (1)" "'-' E /Q £ \frr- *» *>

=E^Gr^-E(/QCT- *>-*)

=?i(f)7J(?<'"P<
^i(l)7J^7^>T*

by Inequality C. Since pa > 2, c(^-, n) = 1 for all a and so
Pa

JA}\n>^ <-\Z^M)lA^Vd'
7E^)7'v/r-- Q-B.D.

Proof of Theorem 2. By Inequality B, Lemma 1, and Inequality C, we have

ni/w- < ̂ E^i/w < £e«4^E t\fi\du^\

sjE7^)7<*-">E(/Vj<7f •
Since q > 1, we have c(q, n) = nq~x. By Holder's inequality,

ni/»(oi-<^Q)'E^(£w°i^)a

^(i),E^h-a')""',"(£^,''»')"T

^(O'^-'E^/j^N".-
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Therefore,

/ TJ l/°(')l«"<" < JJ (\)" M<~< £ qa j j'' \ff\<dui dl

CX ,  I '

-5j(i)'*'-,i;*ft-«<>j[wT*

by Inequality C. Since q > 2, we have c(|, n) = 1 and so

7(y)'Ef/nivrr^. q.b.d.

Corollary 1. If fa £ C0'(fi), then

/aIIir,^E(f)7niv^.
Proo/. This follows from Theorem 1 by setting pa = m for all a or from

Theorem 2 by setting qa = 1 for all a.   Q.E.D.

Corollary 2. If f £ C0X (fi), then

/nl/r4(T)7nIV/l"'
Proo/. This follows from Corollary 1 by setting fa = f for all a.   Q.E.D.

Remark. Notice that when m = n-2 and fi is a square, Corollary 2 is sharper

than the result in [7] in the sense that our constant here is M2/8, comparing

to 1M2 /12 there.

Corollary 3. If fa £ Co(fi) and pa>2 are real numbers satisfying Yt,a 1/Pa =

1, then

/Eni/Qv^i<(f)m_I[EQ)1_1/P1fE^/iv/T;.
JaPa*P K2J [a     W ll^PaJa J
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Proof. By Inequality D and Corollary 2, we have

/Enirv/'i
Ja   p   a*p

^E[n(/nir77/oiv/Y.)""]
P       acrP

,E[n(Kf)7jv/7'7/jv/'7"1

=[E(r7#nn(/jv^r-
Therefore, by Inequality B, we arrive at

/aEni/av/^i

Corollary 4. // fa £ C0'(fi), then

/DEni/-v/'i7f)"",(i)'",,"E/0iv^r.
p    a^p ot

Proof. This follows immediately from Corollary 3 by setting pa = m for all

a.   Q.E.D.

Remark. Further interesting integral inequalities of the Poincare-type could eas-

ily be generated from the results above. For instance, by taking m = 2 in

Corollary 4, we get

/Ql'v* + *v/l<^(/Qlv/l' + /nlv*|A,

and by putting / = g in the last expression, we have

These integral inequalities are in general of great interest and have been proven

to be very useful in the study of quantitative as well as qualitative properties of

solutions of many differential and integral equations.

References

1. E. F. Beckenbach and R. Bellman, Inequalities, Springer-Verlag, New York, 1965.

2. W. S. Cheung, Some new Opial-type inequalities, Mathematika 37 (1990), 136-142.



POINCARE TYPE INTEGRAL INEQUALITIES 863

3. G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, Cambridge Univ. Press, Cam-

bridge, 1952.

4. CO. Horgan, Integral bounds for solutions of nonlinear reaction-diffusion equations, J. Appl.

Math. Phys. (ZAMP) 28 (1977), 197-204.

5. CO. Horgan and R. R. Nachlinger, On the domain of attraction for steady states in heat

conduction, Internat. J. Engrg. Sci. 14 (1976), 143-148.

6. C. O. Horgan and L. T. Wheeler, Spatial decay estimates for the Navier-Stokes equations

with applications to the problem of entry flow, SIAM J. Appl. Math. 35 (1978), 97-116.

7. D. S. Mitrinovic, Analytic inequalities, Springer-Verlag, Berlin, 1970.

8. L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa CI. Sci.

(4) 13(1959), 116-162.

9. B. G. Pachpatte, On Poincare-type integral inequalities, J. Math. Anal. Appl. 114 (1986),

111-115.

10. _, On some new integral inequalities in several independent variables, Chinese J. Math.

14(1986), 69-79.

Department of Mathematics, University of Hong Kong, Pokfulam Road, Hong Kong

E-mail address: wscheung@hkucc.hku.hk


