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THE 2-CHARACTER TABLE
DOES NOT DETERMINE A GROUP

KENNETH W. JOHNSON AND SURINDER K. SEHGAL

(Communicated by Ronald M. Solomon)

Abstract. Frobenius had defined the group determinant of a group G which

is a polynomial in n = \G\ variables. Formanek and Sibley have shown that

the group determinant determines the group. Hoehnke and Johnson show that

the 3-characters (a part of the group determinant) determine the group. In this

paper it is shown that the 2-characters do not determine the group. If we start

with a group G of a certain type then a group H with the same 2-character

table must form a Brauer pair with G . A complete description of such an H

is available in Comm. Algebra 9 (1981), 627-640.

1. Introduction

The group determinant was first introduced in 1896 by Frobenius [3]. It

was the problem of how this determinant factorizes which led him to define

characters for an arbitrary finite group G. It is a natural question to consider

whether G is determined by its group determinant, but it appears that this

question was not raised until 1986 (Johnson [7]). In fact the group determinant

contains sufficient information to determine a group. This was shown in 1990

by Formanek and Sibley [4], and recently an elementary proof has appeared
by Mansfield [9]. In [3] there were also introduced functions x(k)'- Gk —> C

which correspond to a character x of G, k = 1,2, ... . These were named

k-characters in [8]. It follows from [3] that if {/,}, 1 < i < m, is the set of

distinct irreducible characters of G then {x\\ 1 < k < deg(Xi), 1 < i < m}

determines the group determinant of G, and hence G.

Recently it has been announced by Hoehnke and Johnson [5] that the 3-

character of the regular representation, or equivalently the knowledge of the
1-, 2-, and 3-characters corresponding to all the irreducible characters of G, is

sufficient to determine G. If x is a character of G, the 1-, 2-, and 3-characters
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corresponding to x are defined as follows:

X{1)(g) = x(g), geG,

{ll)   X{2){g,h) = x(g)x(h)-X(gh),        g,h£G,

X{3\g,h,k) = X(g)x(h)x(k) ~ X(g)x(hk) -X(h)x(gk)

-X(k)x(gh) + X(ghk) + x(gkh),        g,h,k£G.

Thus an answer is provided to the question of Brauer in [ 1 ] as to which infor-

mation in addition to the (ordinary) character table of a group is sufficient to

determine a group.
There remains the question of whether a group can be determined by its 2-

characters. In [8] a 2-character table of a finite group G is defined. If the set

of irreducible characters of G is {xx, ■ ■ ■ , Xm} then two types of "degenerate"

2-characters are defined:

(i) Xi ° Xj(g, h) = Xi(g)XjW + Xi(h)Xj(g),        l<i<j<m,
(1.2)

(ii) x{2'+\g, h) = Xi(g)Xi(h) + Xi(gh),        l<i<m.

The 2-character table of G then consists of the xf^ > where de%(Xi) > 2, and the

degenerate 2-characters described in (1.2). It is shown in [8] that orthogonality

relations hold among these 2-characters.

A consequence of Theorem 2.1 of this work is that there exist pairs of noni-

somorphic groups with the same 2-character table, an explicit example of such

a pair being two groups of order 624 • 625 . It follows that the 2-characters are

not sufficient to determine a group.

We remark that G and H have the same 2-character tables if and only if

there exists a map y/: G —► H and a correspondence Xi <-* Pi between the

irreducible characters of G and H such that for each generalized 2-character
v of G (see above)

(L3) v(g,h) = x(y/(g),y/(h)),

where r is the 2-character of H which corresponds to v under the correspon-

dence induced by Xi *-* Pi-
Throughout the paper it is assumed that all characters are complex characters.

2. Doubly transitive solvable Frobenius groups

In [2] it is shown that if G is a doubly transitive solvable permutation group

and if the group H has the same ordinary character table as G then H must

also be a doubly transitive solvable permutation group, and {G, H} is a Brauer

pair. Moreover, the classification of Huppert [6] may be used to show that,

apart from exceptional cases in which the character table of G determines G

uniquely, G and H must be subgroups of FS(pn), the group of semilinear

maps of the finite field F = GF(p"). We prove the following theorem, which

depends on results in [2].

Theorem 2.1. Let G be a doubly transitive solvable Frobenius group. Then the

following are equivalent:

(a) The groups G and H form a Brauer pair.

(b) The groups G and H have the same 2-character tables.
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Proof. We first prove that (a) => (b). Suppose that G is a doubly transitive

Frobenius group and that there is a group H not isomorphic to G such that

{G, H} is a Brauer pair. In [2] it is shown that G and H must be subgroups

of FS(p") of the following form. Let a denote the Frobenius automorphism

(*„) of F, co denote the map (*w) of F (for any w £ F), and n* denote

the map (* ) (for any n £ F). From now on let us pick co to be a generator

of the multiplicative group of F. Let N = (n*; n £ F) be the subgroup of

FS(p") isomorphic to the additive group of F . Then

G ~ G0 * N,    where G0 = (cok , avG>i),

H~H0kN,    where H0 = (cok ,ovG>>)

with k/(p" - 1), vk = n, (k, i) = (k, j) = 1, and such that pv has order k
modulo k(pv - 1).

Lemma 2.2. Suppose (k, i) = 1 and (k, j) = 1. Then a prime q can be chosen

such that q\p" - 1 and j = lq modulo k.

Proof. Let

(2.1) x = ji~x mod k,

where i~x is the inverse of i in TLk . Then x = a + kt, a = j • i~x . Thus any

element of the arithmetic progression {a + kt; t = 1,2,...} is a solution of

(2.1) and by Dirichlet's theorem a prime solution q may be chosen such that

q\pn - 1. Then j = iq mod k .   □

Lemma 2.3. Define the map 6: G0 -> H0 by

d(cok) = cok<l,        B^of) = ovcoiq ,

where q is a prime satisfying the conditions of Lemma 2.2. Then 6 extends to
an isomorphism from Gq to Hq, such that 6(ovt(or) = ovtcorq whenever ovtcor

lies in Go.

Proof. It is clear that 6(tok) lies in Ho . Now

0(crW) = cr"©''" = ovcoj+kx,        X£Z,

since q = j mod k and thus

0K©') = (ff"fi>'')(ffla)   lies in H0 .

The elements of Go may be described uniquely as those of the form

(2.2) (ffW)'©**,        0<t<-,  1 <X<?-^-.

For suppose (ovco')'cokX = (ovto1)''cokx' with 0 < f < t < n/v and

1 < X, X' < (pn - l)/k . It follows that (tr"©')'"'' = cok^'-X), i.e.,

CTv('-'')a}s = cok^'~X)   for some s

(using Lemma 1.2(vi) in [2]). Therefore t - t' = 0, and hence X - X' = 0.

Thus the elements in (2.2) are all distinct, and by counting must form all the

elements of Go.
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Now define

flKff"©'')'©**) = (d(ovcoi))t(e(cok))x = (ovGiiq)'clikqX

= (Tvt6)i9((p'"-X)/(p-l))+kqX

again using Lemma 1.2(vi) in [2]. Note that since

(ovco')'cokx = (y'"fi>««>"-t)/0»-n)+w

it follows that 6(ovtGir) = avtGfq whenever avtof lies in Co.

Therefore for elements avtGf and avt'Gf' of Go we obtain

Q\(avlGf)(ovl'Gf')\ = d[ov{t+t')torP'"l+r']    (using Lemma 1.2(v) in [2])

= av{t+t')coq(rp'"'+r') = ov'coqrov,'coqr'

= d(ov,tor)d(ovt'or').

Hence 8 is a homomorphism of Go into Ho .
Suppose 0(ovtG>r) = e. Then avtarq = e, and thus ovt = e and Gfq = e

since (a) n (Gi) = {e} . Hence kerf? = {e} and Lemma 2.3 is proved.    D

Now define the map y/: G —> H by

V(gon*) = e(g0)(nqy ,        n*£N, g0 £ G0.

We will show that y/ induces an identification of the 2-character tables of G

and H.
In [2] the character table of G is determined (and is the same as that of H).

It consists of characters Xi > • • • > Xi which are obtained from the irreducible

characters Xi > • ■ • . Xi of G by composing the corresponding representations
with the homomorphism G —► Go given by gon* —» g0, together with a single

extra character xi+i which is p - 1, where p is the permutation character

corresponding to the representation of G as a permutation group on F . Thus

Xi(go"*) = Xi(go), /'= 1,...,/,  go^e,  go £ G0, n* £ N,

Xi(n*) = Xi(e), i = l,..., /, n* eJV,
Xi+i(e) = Pn - 1,

Xi+i(gon*) = 0 ifgo^e,

Xi+i(n*) = -\ if n*^e£N.

We claim that the conjugacy classes of G are of the following form. Let Clc(g)

denote the conjugacy class of the element g in G. Then if e ^ go £ Go, it

follows that Clo(go) = {xn*; x £ Clc0(g), n* £ N}. The remaining two

classes are {e} and N-{e}. Suppose goi^e lies in Go . An arbitrary element

y £ G may be written y = yon*, yo £ Go, n* £ N. Then

g0, = (g8>)n' = (n')-lg0n*   (go- = gyo°eGo)

= go(n*rlgon* = g'0n'*    (for some ri e N).

Now suppose #o = go for x = xori £ G. Then g0 = n*~xgQ°ri . But

since G is Frobenius, (n*)~xg0x°n* fixes 0 if and only if ri = e. Hence

CG(go)  =  CGo(g0).    Thus   [G :  CG(g0)]  =  [G :  G0][G0  :  CGo(g0)l\ i.e.,
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\ClG(go)\ = \N\ \ClGo(g0)\ and hence ClG(gQ) = {xn*; n* £ N, x £ ClGo(g0)} .
Since CG(ri) = N - {e} for n* £ N - {e} , the above claim is justified.

We now set up the correspondence between the characters of Go and Hq ,

Xi <-» pi, by means of the isomorphism 9 :

Xi(go) = Pi(0(go)).        So € G0.

The characters px,..., pi of H are defined by

Pi(h0ri) = pi(h0),        i = l,...,/,

and again p!+x = p - 1 . Thus

Xi(gori) = Pi(e(g0)(nq)*),        i=l,...,l+l,

and

Xi(g) = Pi(w(g)),        i=i,...,l+l, g£G.

We now verify that (1.3) is satisfied by all possible choices for v .

(i) v = xi°Xj,    x = Pi°Pj,       l </<;</+1,

v(g> g') = Xiig)Xj(g') + Xi(g')Xj(g)

= Pi(v(g))Pj(y/(g')) + Pi(y/(g'))Pj(y/(g))

= i(V(g), v(g'))-

(ii) v = xf   or   Xf'+\        1 < J < /•

If v = xf\ then  u(g, g') = Xj(g)Xj(g') - Xj(gg')-   Let g = g0n*  and
g' = g'^ri*. Then gh = gog'ori'* for some n" £ N. Hence

v(g, g') = Xj(¥(g))Xj(¥(g')) -Xj(gogo)

= Pj(¥(g))Pj(¥(g')) ~ flj(6(gog0))

= Mj(¥(g))Mj(¥(g')) ~ Pj(v(go)v(gd))
= x(y/(g), y/(g')).

The second case is similar (note that /j2)   occurs as a 2-character only if

deg(;o) > 2).

(iii) " = *{?, <* *&+);

let v = x\}x • For convenience we omit the suffix / + 1, thus

v(g, g') = X(g)x(g')-X(gg')-

Let g = gori and g' = g'Qri*.
We consider two cases:

Case 1.  gog'o # e. Then x(gg') = X(gog0""*) = 0 and

v(g)v(g') = e(go)(nq)*e(g'o)(riq)*
= e{go)6(g'o)n1"*   (ri"* £ N)

= d(gogo\)n'"*.

So  y/(g)y/(g')  is not an element of N.   Hence p(y/(g)w(g')) = 0.   Thus

v(g, g') = x(g)x(g') = p-(w(g))p(w(g')) = T(v(g), V(g')) ■
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Case 2. gg' £ N. We show that gg' = e if and only if y/(g)y/(g') = e. It

will then follow that

X(gg') = MV/(g)¥(g'))   for all g, g' such that gg' £ N,

and as in Case 1 that v(g, g') = X(y/(g), y/(g')). Thus suppose gog'o = e.

Then

gg' = gog'o(ri)g«ri* = (n*y'»ri*.

Now let #o = a^GX1. It follows from Lemma 1.2 in [2] that

(n*)g»(ri*) = (npV'cox)*(ri)* = (np"'cox + ri)*

and thus gg' = e if and only if npvtcox + ri = 0, i.e., if and only if

-np' cox = ri . Now

y/(g)y/(g') = e(go)(nq)*d(g'o)(riq)*

= e(go)e(g'o)(nq)*e^\n'q)*

= (nq)*e^(n'q)* = (ni)*""'^ (n'q)*

= (nqp'"toXq)*(riq)* = (nqp'coXq + n">)*

which is e if and only if -nqp"'coXq = n'q .   Thus gg' = e if and only if

V(g)v(g') = e-
The case v = /(2>+) is similar.

Hence in all cases we have shown that (1.3) holds; i.e., the 2-character tables

of G and H are the same.

Proof that (b) => (a). This is immediate on noting that

(i) If G and H have the same 2-character tables then they necessarily have

the same ordinary character tables (see §1).
(ii) As quoted above, in [2] it is shown that if G is any doubly transitive

solvable group and H has the same ordinary character table as G then {G, H}

form a Brauer pair.   □

Example. Suppose p = 5, n = 4, k = 4, v = 1, i = 1, and 7 = 3. Then G
and H are nonisomorphic groups of order 624-625. By Theorem 2.1, G and

H have the same 2-character tables. An explicit value for q in this case is 7.

3. Some open problems

A consequence of the work in [5] is that if a representation is sufficiently large

its 3-character is sufficient to determine the group. There remains the question

of how much information the 3-character of an arbitrary faithful representation

contains. In [8] the case of an irreducible representation of degree 2 is consid-

ered. Here the 2-character alone contains sufficient information to construct

an explicit matrix representation. Thus the 2-character of a faithful irreducible

representation of degree 2 determines the group.

Problem 1. Let x be a faithful irreducible representation of G of degree greater

than 2. Does x^ determine G?

By the results of §2, the condition that G and H have the same 2-character

tables is not sufficient to ensure that G and H are isomorphic. Since Brauer

pairs have been the subject of investigation, we pose the following.
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Problem 2. If G and H have the same 2-character table must G and H nec-

essarily form a Brauer pair?

Finally we consider representations over fields of finite characteristic. By [4],

the group determinant over any field whose characteristic does not divide \G\

determines G. In [5] it is shown that if char(AT) ̂ 2 and char(A")f \G\ the 1-,
2-, and 3-characters of the regular representation over the field K determine

G.

Problem 3. Let G be a group of odd order and K be a field of characteristic

2. Which is the smallest value of k for which the 1-, 2-, ... , fc-characters of

the regular representation over K determine G ?
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