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ABSTRACT. Frobenius had defined the group determinant of a group G which
is a polynomial in n = |G| variables. Formanek and Sibley have shown that
the group determinant determines the group. Hoehnke and Johnson show that
the 3-characters (a part of the group determinant) determine the group. In this
paper it is shown that the 2-characters do not determine the group. If we start
with a group G of a certain type then a group H with the same 2-character
table must form a Brauer pair with G. A complete description of such an H
is available in Comm. Algebra 9 (1981), 627-640.

1. INTRODUCTION

The group determinant was first introduced in 1896 by Frobenius [3]. It
was the problem of how this determinant factorizes which led him to define
characters for an arbitrary finite group <. It is a natural question to consider
whether G is determined by its group determinant, but it appears that this
question was not raised until 1986 (Johnson [7]). In fact the group determinant
contains sufficient information to determine a group. This was shown in 1990
by Formanek and Sibley [4], and recently an elementary proof has appeared
by Mansfield [9]. In [3] there were also introduced functions x*): G — C
which correspond to a character y of G, k=1, 2,.... These were named
k-characters in [8]. It follows from [3] that if {x;}, 1 < i < m, is the set of

distinct irreducible characters of G then { xf") , 1 <k <deg(xi), |l <i<m}
determines the group determinant of G, and hence G.

Recently it has been announced by Hoehnke and Johnson [5] that the 3-
character of the regular representation, or equivalently the knowledge of the
1-, 2-, and 3-characters corresponding to all the irreducible characters of G, is

sufficient to determine G . If y is a character of G, the 1-, 2-, and 3-characters
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corresponding to y are defined as follows:

xM(g) =x(g), g€G,
x2(g, h)=x(&)x(h)—x(gh), g,heq,
x(g, h, k) =x(@)x(h)x(k) - x(&)x(hk) — x(h)x(gk)
- x(k)x(gh) + x(ghk) + x(gkh),  g,h,k€G.

Thus an answer is provided to the question of Brauer in [1] as to which infor-
mation in addition to the (ordinary) character table of a group is sufficient to
determine a group.

There remains the question of whether a group can be determined by its 2-
characters. In [8] a 2-character table of a finite group G is defined. If the set
of irreducible characters of G is {x1, ..., xm} then two types of “degenerate”
2-characters are defined:

(1) xioxj(g, h) = xi(&)xi(h) + xi(W)x;(g), 1<i<j<m,
( ° .. (2,+) .

(i1) 2,7 (g, h) = xi(&)xi(h) + xi(gh),  1<i<m.
The 2-character table of G then consists of the xfz) , where deg(x;) > 2, and the
degenerate 2-characters described in (1.2). It is shown in [8] that orthogonality
relations hold among these 2-characters.

A consequence of Theorem 2.1 of this work is that there exist pairs of noni-
somorphic groups with the same 2-character table, an explicit example of such
a pair being two groups of order 624 -625. It follows that the 2-characters are
not sufficient to determine a group.

We remark that G and H have the same 2-character tables if and only if
there exists a map y: G — H and a correspondence y; < u; between the
irreducible characters of G and H such that for each generalized 2-character
v of G (see above)

(1.3) v(g, h)=1(y(g), ¥(h),

where 7 is the 2-character of H which corresponds to v under the correspon-
dence induced by y; < u;.
Throughout the paper it is assumed that all characters are complex characters.

(1.1)

2. DOUBLY TRANSITIVE SOLVABLE FROBENIUS GROUPS

In [2] it is shown that if G is a doubly transitive solvable permutation group
and if the group H has the same ordinary character table as G then H must
also be a doubly transitive solvable permutation group, and {G, H} is a Brauer
pair. Moreover, the classification of Huppert [6] may be used to show that,
apart from exceptional cases in which the character table of G determines G
uniquely, G and H must be subgroups of FS(p"), the group of semilinear
maps of the finite field F = GF(p"). We prove the following theorem, which
depends on results in [2].

Theorem 2.1. Let G be a doubly transitive solvable Frobenius group. Then the
following are equivalent :

(a) The groups G and H form a Brauer pair.
(b) The groups G and H have the same 2-character tables.
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Proof. We first prove that (a) = (b). Suppose that G is a doubly transitive
Frobenius group and that there is a group H not isomorphic to G such that
{G, H} is a Brauer pair. In [2] it is shown that G and H must be subgroups
of FS(p") of the following form. Let ¢ denote the Frobenius automorphism
(o) of F, @ denote the map (7)) of F (forany w € F), and n* denote
the map (,;,) (forany n € F). From now on let us pick @ to be a generator
of the multiplicative group of F. Let N = (n*; n € F) be the subgroup of

FS(p™) isomorphic to the additive group of F. Then
G~Gyx N, where Go=(cb",a”a)i),
H~Hyx N, where Hy = (", @)

with k/(p" - 1), vk =n, (k,i) = (k, j)=1, and such that p¥ has order k
modulo k(p¥ - 1).

Lemma 2.2. Suppose (k,i)=1 and (k, j)=1. Then a prime q can be chosen
such that q{p™ — 1 and j = iq modulo k.

Proof. Let
(2.1 x=ji"'modk,
where i~! is the inverse of i in Z; . Then x =a+kt, a=j-i~!. Thus any
element of the arithmetic progression {a + kt;t=1,2,...} is a solution of
(2.1) and by Dirichlet’s theorem a prime solution ¢ may be chosen such that
gip"—1.Then j=igmodk. O
Lemma 2.3. Define the map 0: Gy — Hy by

0(a*) = @9, 0(c'@') = 6’ @,
where q is a prime satisfying the conditions of Lemma 2.2. Then 0 extends to
an isomorphism from Gq to Hy, such that 6(c"'@") = o¥'@"Y whenever ' @"
lies in Gy.
Proof. 1t is clear that §(@*) lies in Hy. Now

0(c’®') = 6’ @' = gV @K, A€EZ,

since ¢ = j mod k and thus

8(c’®') = (6@ )(@**) lies in Hp.

The elements of Gy may be described uniquely as those of the form

n_
(2.2) (6w ) @ 0515?—}, 1<i<? - L

For suppose (o'@!)@** = (0'w!)'@** with 0 < ¢ < t < n/v and
1<, X < (p"—1)/k. It follows that (¢v@')"~" = @** -4 e,

— k(A —4)

e = @ for some s

(using Lemma 1.2(vi) in [2]). Therefore ¢t — ¢ = 0, and hence 1 — A’ = 0.
Thus the elements in (2.2) are all distinct, and by counting must form all the
elements of G .
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Now define
0((c' @) @k = (8(c?@")) (6(a))* = (¢” @) & *
= gVl @i =1)/(p—1))+kqa

again using Lemma 1.2(vi) in [2]. Note that since

(avwi)ta)ki = g @i =1)/(p—1))+kA

it follows that 0(cV'@") = g"'@" whenever o¥'@" lies in Gp.
Therefore for elements ¢*'®" and ¢"' @ of G, we obtain

Bl(c¥'@")(c"" @ )] = O[c* @™ +"'] (using Lemma 1.2(v) in [2])
= g"(l+t’)a,q(rp”"+r’) = gV @i g? @
=0(c"'@")0(c"" @").

Hence 6 is a homomorphism of Gy into Hp.
Suppose 0(c"'@") = e. Then g% @ = e, and thus g"" = e and @7 =e¢
since (g) N (@) = {e}. Hence ker@ = {e} and Lemma 2.3 is proved. O

Now define the map y: G — H by

w(gon®) =0(g)(n")*, n"eN, g € Go.

We will show that y induces an identification of the 2-character tables of G
and H.

In [2] the character table of G is determined (and is the same as that of H).
It consists of characters x;, ..., x; which are obtained from the irreducible
characters %;,..., ¥; of G by composing the corresponding representations
with the homomorphism G — Gy given by gon* — gy, together with a single
extra character x;,; which is p — 1, where p is the permutation character
corresponding to the representation of G as a permutation group on F . Thus

Xi(&n*) = %i(&) i=1,...,1, go#e, g€Gy,n" €N,
xi(n )=x() i=1,...,1, n*eN,
Xi+1(e) =
Xi+1(&nN*) = if go #e,
X1 (n*) = —1 ifn*#eeN.

We claim that the conjugacy classes of G are of the following form. Let Cl;(g)
denote the conjugacy class of the element g in G. Then if e # gy € Gy, it
follows that Clg(g) = {xn*; x € Clg,(g), n* € N}. The remaining two
classes are {e} and N—{e}. Suppose gy # e liesin Gy. An arbitrary element
yeG maybewrittcn y=yon*, yo € Gy, n* € N. Then

= (&) =(n*)""'gn* (g = &° € Go)
= go(n*)"'gon* = gon’* (for some n’ € N).

Now suppose gf = gy for x = xon* € G. Then gy = n*~!g°n*. But
since G is Frobenius, (n*)~!gj°n* fixes 0 if and only if n* = e. Hence
Cs(8) = Cg,(8). Thus [G : Cg(&)] = [G : GollGo : Cg,(80)], ie.,
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|ClG(8o)| = |N||Clg,(80)| and hence Clg(go) = {xn*;n* € N, x € Clg,(&)} -
Since Cg(n*) = N — {e} for n* € N — {e}, the above claim is justified.
We now set up the correspondence between the characters of Gy and Hp,
i < I;, by means of the isomorphism 6:
Xi(&) = 1i(6(8o)) » &o € Go.
The characters u;, ..., y; of H are defined by
ui(hon™) = @i(ho), i=1,...,1,
and again y;,; = p—1. Thus
xi(gon®) = ui(6(go)(n?)*), i=1,...,1+1,
and
xi(g) = ui(vw(g)), i=1,...,1+1, geG.
We now verify that (1.3) is satisfied by all possible choices for v .
(1) V=xioXj, T=Hiol;, 1<i<j<i+1,
v(g, &) = xi(8)xj(&)+xi(8)xi(8)
= wi(y(8)ui(w(g") + ni(w(g)ni(v(g))
=1(y(g), w(g&))-

(i) v=yx? or x*Y, 1<j<l

If v =x?, then v(g,g") = x;(8)x;(g') — xj(g8"). Let g = gn* and
g =gyn'*. Then gh = gogyn"* for some n"” € N. Hence
v(g, &) = xj(w(g)xi(w(g") — %i(808&)
= pj(w(8)ui(w(g") — ;i(6(8&))
= pi(w(8)ui(w(g") — ui(w(g)w(&))
=1(y(8), w(g)-
)

The second case is similar (note that x;
deg(x;) =2 2).
2,+).

2
(iii) V= x,(+)1 or X1(+1 ;

occurs as a 2-character only if

let v = x,(i), . For convenience we omit the suffix / + 1, thus

v(g, &) =x(g)x(g) - x(gg").
Let g = gon* and g’ = gyn"™.
We consider two cases:
Case 1. gogy#e. Then x(gg') = x(gogyn"*) =0 and

w(g)w(g') = 0(go)(n?)*0(g)(n'?)*
= 0(g0)0(go)n"* (n"™ € N)

"%

= 60(gogo)n""™.

So w(g)w(g') is not an element of N. Hence u(y(g)w(g’)) = 0. Thus
v(g, &) =x(g)x(g") = uw(g)uw(g)) =t(v(g), v(g)).
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Case 2. gg' € N. We show that gg’ = ¢ if and only if w(g)y(g') =e. It
will then follow that

x(g8') = u(y(g)w(g')) forall g, g suchthat gg' € N,
and as in Case | that v(g, g') = A(w(g), w(g')). Thus suppose gogy = €.
Then , )
g8’ = gogh(n")%n"* = (n)%n'".
Now let g} = o¥'@"*. It follows from Lemma 1.2 in [2] that
(n7)8(n"*) = (0" )" (n')* = (0" @ + ')
and thus gg’ = e if and only if np”'w* + n’ = 0, ie., if and only if
—n?"w* =n'. Now

w(g)w(g') = 0(go)(n?)*0(g)(n")"
= 6(80)0(gp)(n?)*%&) (n'4)*
= (n9)*0&) (n'9)* = (n9)**"@" (n'1)*
= (n?" *)*(n'1)* = (n9?' w* + n'?)*

which is e if and only if —n%"w* = n'?. Thus gg’ = e if and only if
y(gv(g)=e.

The case v = x(21) is similar.

Hence in all cases we have shown that (1.3) holds; i.e., the 2-character tables
of G and H are the same.

Proof that (b) = (a). This is immediate on noting that

(i) If G and H have the same 2-character tables then they necessarily have
the same ordinary character tables (see §1).

(ii) As quoted above, in [2] it is shown that if G is any doubly transitive
solvable group and H has the same ordinary character table as G then {G, H}
form a Brauer pair. O

Example. Suppose p=5, n=4, k=4, v=1,i=1,and j=3. Then G
and H are nonisomorphic groups of order 624-625. By Theorem 2.1, G and
H have the same 2-character tables. An explicit value for ¢ in this case is 7.

3. SOME OPEN PROBLEMS

A consequence of the work in [5] is that if a representation is sufficiently large
its 3-character is sufficient to determine the group. There remains the question
of how much information the 3-character of an arbitrary faithful representation
contains. In [8] the case of an irreducible representation of degree 2 is consid-
ered. Here the 2-character alone contains sufficient information to construct
an explicit matrix representation. Thus the 2-character of a faithful irreducible
representation of degree 2 determines the group.

Problem 1. Let y be a faithful irreducible representation of G of degree greater
than 2. Does x®) determine G?

By the results of §2, the condition that G and H have the same 2-character
tables is not sufficient to ensure that G and H are isomorphic. Since Brauer
pairs have been the subject of investigation, we pose the following.
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Problem 2. If G and H have the same 2-character table must G and H nec-
essarily form a Brauer pair?

Finally we consider representations over fields of finite characteristic. By [4],
the group determinant over any field whose characteristic does not divide |G|
determines G . In [5] it is shown that if char(K) # 2 and char(K){|G| the 1-,
2-, and 3-characters of the regular representation over the field K determine
G.

Problem 3. Let G be a group of odd order and K be a field of characteristic
2. Which is the smallest value of k for which the 1-, 2-, ..., k-characters of
the regular representation over K determine G?
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