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LOWER BOUND ON THE ERROR PROBABILITY FOR FAMILIES

WITH BOUNDED LIKELIHOOD RATIOS

ANDREW L. RUKHIN

(Communicated by Wei Y. Loh)

Abstract. In the classification problem a new sharp lower bound for the error

probability is derived. This bound depends only on the prior probabilities and

on the support of pairwise likelihood ratios.

1. Introduction

Let Px, ... , Pm be a family of different probability distributions and let

x be an observation on one of the corresponding random variables. In the

classification problem a decision about the true distribution has to be made

on the basis of x. If 5 = S(x) is a classification procedure, i.e., 8 takes

values 1, ... , m, and wk , k = 1,... , m, denote prior probabilities, then

under zero-one loss the performance of 8 is measured by Bayes risk (or error

probability)

p(8) = Y, WiPi(8 ±i).
i

Lower bounds for error probability in terms of information measures have been

obtained by a wealth of authors (see, e.g., [2, 4, 8]). Shannon, Gallager, and

Berlekamp obtained a related inequality in the context of communication theory

(see [6]). A good survey of these results and of their use in asymptotic statistical

theory can be found in the monograph of Vajda [9].

In this paper the interest is in obtaining a lower bound on the error probability

when all likelihood ratios dPi/dPk , i f= k, are bounded. Intuitively it is clear

that the closer the probability distributions are to one another, the more difficult

the classification problem is and the larger the error probability is. This intuition

is confirmed by the inequality derived in the paper. The motivation for the

study of the bounded likelihood ratios family is in statistical inference with

finite-memory systems [5]. For instance, Hellman and Cover [7] have shown

that in the two-hypothesis testing problem a finite-memory test statistic can

be consistent only if the distribution of the likelihood ratio is supported by
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the whole positive half-line. Thus in the bounded likelihood ratio situation

the error probability is bounded from below by a positive constant and the

mentioned inequality obtained in §3 shows how small this constant can be,

i.e., it provides a lower bound on error probability for the optimal recursive

procedure in the finite-memory setting at any observation stage. Also the choice

of the prior distribution minimizing this bound is suggested. The matrix of

bounding constants which solely determines this distribution is shown in §2 to

have a very special nature; namely, its inverse is an M-matrix.

2.  M-MATRICES AND LINEAR PROGRAMMING

In this section we establish two propositions needed in the proof of the main

result but also of some independent interest.

Let (Sf, p) be a measurable space. In the following fx, ... , fm are positive

/i-integrable functions such that for any positive c and i ^ k

(2.1.) p{x : fi(x) ? cfk(x)} > 0.

Suppose that all the ratios f/fk are bounded, i.e.,

(2.2) flfe.<^M<i_   ^a.s.
Ji(x)     aik

Moreover, assume that aik are the largest quantities satisfying (2.2) and let

A be the mxm matrix formed by these numbers, A = (aik).

Recall the definition of an M-matrix X ([1, Chapter 16, Exercise 13] or [3]).

A matrix C such that cik < 0 for i' ± k is called an M-matrix if one of the

following equivalent conditions holds:

(1) C is nonsingular and all elements of C~x are nonnegative;

(2) for some positive numbers   zx,... , zm,Yfk=xcikzk   >  0, /  =   1,

... , m;

(3) all principal minors of C are positive.

Proposition 2.1. Under condition (2.1) the matrix A is nonsingular and A~x is

an M-matrix.

Proof. It follows from (2.2) that, for all i,k, aikaki < 1 and if, for some

i j^ k, ajkakj = 1 then fk(x) = akif(x) p-a.s., which contradicts (2.1).

aikaki < 1 = auakk .
We start by establishing an analogue of this formula for a sequence of ma-

trices arising in the Gauss elimination algorithm.

Let a|°' = aik and define recursively

(2-3) a^ = a^-a\rl)/anTl).

We assume here a),"-1' ^ 0. The positivity of these and all other coefficients

is implied by the following inequality which is proven by induction:

(2.4) ,#>«« < fl'fflg

where k f= i and k ± j.
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Assuming that (2.4) holds for n - 1 it can be rewritten in the form

fl(»-Ora("-i)fl(»-i) _ fl("-V-'h - a{n'X)\a{n-l)a{"-l) - a(n-1)a("_1)l
,,.."»»      taij       Ukk aik      Ukj      J      "in       t"nj      akk Unk      Ukj      J

' -a(""1)ra(""1)a(""1)-a(""1)a(""1)l>0"kn      {"nk      "ij "ik      "nj      J -* u-

if fl2"1)«ij_l) > «irI)flS~!)'use the ineQuality

in i; ""      '    nj

to estimate the left-hand side of (2.5) as

Jn-l)r   (n-l)   (n-l) _    („-l)   („-!). _    (n-X)   (n-l)   (n-X)
"nn      l«y       "kk "ik      "kj      J      "ij       """      "kk

+fl<"-'U»-i)a(»-i)a("-i)/fl(»-i> _ a(n-1)ra(""1)a('!"1) - a("-,)a(B~I)l-t-aoA.     a„„    anfc    afcj.     /anj akn    \\unk    utj anj     uik     j

= ia("-')a(«-') _ a{n-l)a{n-l)Ma{n-l)a{n-1] - a("-x)a{"-x)Ma(n~X) > 0
{"nk      "ij "ik      "nl      nukj      "mm "kn      "nj      U"nj       > u-

If a(rfkx)a(f-l) < aj"!)aj}-l), use the inequality

"ik       - "nk     "ij      l"nj

and estimate the left-hand side of (2.5) from below as

J«-i)/-D/-i) _ a(»-«)a(»-i)a(«-D/a(»-i)"nn      atj       Ukk Unn      Ukj      Ujj       /unj

^(n-l)^(«-l)„(«-l)   ,   „(«-!) J«-l)„(n-l)
~ain      <j      akk       +a\n      <k      %

= [a("'X)a("-X) - a{l-x)alnrx)][a{nnn-X)a{n-x) - a{n'X)a{n-X)]/a{n-X) > 0.
1   kk        nj nk        kj      Jl"nn      ";; "in       "nj      J/   nj        ^

Thus (2.4) holds and it follows that dff„~x) > 0. In particular the matrix A
is nonsingular and all principal minors of A are positive. To prove that A~x is

an M-matrix it suffices now to show that its off-diagonal elements are negative.

Let Ak. be the k,j cofactor of matrix A. Since A~x = (Aki/\A\), one

must demonstrate that, for / ^ k,  Akl < 0.
Assume for concreteness sake that i < k. Transform elements of A re-

peatedly after (2.3), i.e., subtract the multiples of rows 1, ... , k - 1 and

k + l, ... , m so that the only nonzero element in the j th column is a7J, j =

1, ... , i - 1 ,k + 1, ... , m, which is positive. Therefore, the sign of Aki is

that of the determinant of the matrix

/ fl,/+i     •••     aik \

aj+xi+i    ■■■   ai+\k

\ak-li+l     ■■■     aj-xi/

whose elements satisfy (2.4).

Applying the same procedure to columns of this matrix we see that if i + k

is even, the sign of its determinant coincides with the sign of ak_xk (which is

positive) and if i + k is odd, this sign equals that of the determinant

ak-2 k-i   ak-x k-i

ak-2 k       ak-x k

which is negative.   D
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Because of Proposition 2.1 one can always find a vector w with positive

coordinates, w > 0, such that (AT)~xw > 0. Here A1 denotes the transposed

matrix which is an M-matrix simultaneously with A .

In the sequel (z, w) = YlT=i ziw' w^ denote the inner product of two vec-

tors z = (z\, ... , Zm)1 and w = (u>x, ... , wm)T. Also ej, j = 1, ... , m,

will denote the basis vectors and e = 2~Z/ ej' = (1 > • • • > 1 )T •

Proposition 2.2. Under the conditions of Proposition 2.1 let Rk, k = 1,... , m,

be a partition of ff. Put w = (J fdp, ... , J f„ dp)    and assume that

(2.6) (Ar)~le>0.

Then

W fkdp<(A~xw,e).
k  Jr*

Proof. One has

zk = /   fkdp<—      f dp,
jRk "ik jRk

so that

J2a'^Zk<Y. fdp = Wl.
k k JRk

In other terms

(2.7) Az<w,        z>0,

and the determination of the maximum of the linear function Y^,k zk — (z > e)

over the convex set determined by (2.7) presents a classical problem of linear
programming.

Condition (2.6) guarantees that the inequality (z, e) < (A~xw , e) is a corol-

lary of (2.7), and this proves Proposition 2.2 which now also immediately fol-

lows from the duality theorem.   □

If (2.6) does not hold then (z, e) takes values larger then (A~xw , e) on the

set (2.7). This fact follows from the Farkas Lemma, which together with the

fundamental theorem of linear programming also can be used to show that

max(z, e) = max{(Afxw', e<) : (Aj)~xe' > 0}

where A, denotes a submatrix of A obtained by deleting some rows and

columns of A and e', wl denote the corresponding subvectors of e and w .

In particular for m = 2

((l-g2x)wx +(l-ax2)w2
--.-, ai2,a2l<l,

, . 1 - Al2fl21
max(z,e) = -> fli2>1>

w2, a2x > 1.

It is worth noticing that the property that the set {x > 0, : CTx < y} is

bounded for any y > 0 and the nonsingularity of C characterizes M-matrices

(see [3, p. 138]).
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3. Main result

Here Px, ... , pm will be different probability densities over (ff, p), whose

ratios are bounded:
i       .. Pk(x)   „    1

- pi(x) - bik

and B will denote the matrix formed by the quantities bik which are assumed

to be the largest possible. Also let w = (wx, ... , wm)T be the vector of prior

probabilities.
If 80(x) is the Bayes estimator of the finite-valued parameter i, i = 1,

... , m , then its Bayes risk p(80) has the form

p(80) = YtwiPi(d0(x) #/) = l -£>,P/(A(x) = i).

Theorem 3.1. Assume that

(3.1) (BT)'xw>0.

Then

(3.2) p(80)>l-(B~xe,w).

Proof. One has with 7?, = {x : 80(x) = i},   i = 1, ... , m,

Y,wiPi(80(x) = i) = y£ [ fidp
i i   Jr'

where f(x) = WjPi(x). Therefore, conditions of Propositions 2.1 and 2.2 are

met with aik = bikWi/wk . Also the determinants of the matrices A and B are

equal, \A\ = \B\, and if Aki is the k, i cofactor of matrix A and Bki is the
same cofactor of B, then Aki = BkiWj/wk . Thus the inverse matrix A~x has

the form

a-\- (Aki\ - f^L^i\
\\A\)      \\B\wk)'

and condition (2.6) is tantamount to (3.1).

Thus Proposition 2.2 implies that

Y,WiPi(d0(x) = i) < (A~xw,e) = Y^WiBkil\B\ = ((BTyxw,e).   o
i,k

Theorem 3.1 is false without condition (3.1). Indeed if w tends to a basis

vector ei, then p(80) -> 0 but (B~xe, ef) < 1.
If Pi, i = I, ... , m , is the joint density for a sequence of n i.i.d. random

variables with bounded likelihood ratios then bik = 0"k and

lim inf [p(80)]xI" > maxpik.
n — oo i^=k

Therefore, in the situation when a random sample is observed, the exponen-

tial rate of the error probability cannot exceed - logmax,^ fiik (see [8] for a

similar inequality).
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If m = 2, then according to Theorem 3.1

tii\       tx\^i     wx(l-bx2) + w2(l-b2l)     wxbx2 + w2b2l-bx2b2x

(3J)     HSo)-1-T^^-=-L^fbfx->

provided that

wx > b2xw2 > bx2b2xwx.

Also if wx < b2xw2, p(80) > 1 - w2, and if w2 < bx2wx , p(80) > 1 - wx .

For wx =w2 = j

ti A\ n/X \ ^  *12 + *21 -2*12*21

(14) "M *      2(1-bx2b2x)     ■

When bx2 = b2x = b, 0 < b < 1 , (3.4) reduces to the inequality

which shows that for b close to 1 the Bayes rule cannot be much more efficient

than pure guessing (in which case the error probability is equal to j). The

smaller the b, i.e., the wider the range of the likelihood ratio, the smaller the

Bayes risk could be.
As an example let Pi, i = 1,2,  be two binomial distributions with proba-

bilities Pi, px <p2. Then

and according to Theorem 3.1 one has {80(x) = 1} = {x : x < c} with

c=„iogi^a/iogf^fll,
1-P21 V(l-P2)Pl\

so that

Px(80 = 2) + P2(80 = 1) = J2 ("V(1 -Pi)"-* + £ ("W -P2)"-x
x>c  ^    ' x<c ^    '

*12 + *21 -2*12*21

1 -*12*21

If n = 1 this reduces to an equality which shows that the bound (3.3) is sharp.

As another example consider the classification problem for two Cauchy dis-

tributions with the location parameter values 6 and —6 . An easy calculation

shows that

bx2 = bn = 1 + 2d2 - 26^1+62

and according to (3.4)

p{6°] * 2- - uhw-
This inequality shows that for small values of 6 when the classification problem

is "difficult", the Bayes rule cannot have the error probability much different

from 5 , and it also gives the correct rate 6~2 of the error probability for large

values of 6.
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It is worth noticing that inequality (3.2) is useful even if some bik vanish.

For instance when Pi(x) = A,exp(-A/.x) for positive x with, say, Ai < A2,

then *2i =0, *n = A1/A2 and, for any probability Wx,  p(80) > WxAx/A2.

Also observe that the bound (3.3) is larger than the lower bound for

the error probability of the recursive time-invariant classification rule

obtained by Hellman and Cover [7]. Indeed their bound has the form

(2^/b^2b2^w^w2 - *i2*2i)/(l - *n*2i) which cannot exceed (3.3).
Now we derive the form of the prior distribution which minimizes (3.2).

Theorem 3.2. Under conditions of Theorem 3.1

(3.5) (7J-'e,-»j)<max =
'     L,k °ik       L,k Oik

If I is defined by (3.5) uniquely then the equality in (3.12) is attained if and only
ifw = BTe,/(Be),.

Proof. Let y = (BT)-Xw > 0. Then

(3.6) l = (BTy,e) = (y,Be).

The maximization of the linear function (B~xe, BTy) = (e, y) under condition

(3.6) is also a linear programming problem whose solution is y = eif(Be)\.   D

If there are several values of / satisfying (3.5) then any vector w attaining

equality in (3.5) must be a convex combination of the vectors BTei/(Be)i.

Since Br is a matrix with positive elements, it has the largest positive eigen-

value r with an eigenvector w with positive components. For such w

(B~xe,w) = -(e,w) = -.

It follows from (3.5) that

1   . 1
- < max _ ,    ,
r        '    Er bik

i.e., r > min, ~%2k bik which is of course a known bound on the largest eigenvalue
[1, Chapter 16, §8].

If m = 2, the prior distribution from Theorem 3.2 has the form

1 *12 T, ,
Wx = .      ,       W2= lf*12<*21

1 + *12 1+*12

and

m = ,  , L    »     w2 = ,   , h if*12>*21-
1 + *21 1 + *21

In the binomial example, if n — 1, px < p2 < \

Pi P2
Wx = -, w2 = -.

Pi +P2 Pl+ P2

so that the "more difficult" value of p gets larger weight.
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