PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 119, Number 4, December 1993

LOWER BOUND ON THE ERROR PROBABILITY FOR FAMILIES
WITH BOUNDED LIKELIHOOD RATIOS
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(Communicated by Wei Y. Loh)

ABSTRACT. In the classification problem a new sharp lower bound for the error
probability is derived. This bound depends only on the prior probabilities and
on the support of pairwise likelihood ratios.

1. INTRODUCTION

Let P,,..., Py, be a family of different probability distributions and let
x be an observation on one of the corresponding random variables. In the
classification problem a decision about the true distribution has to be made
on the basis of x. If § = d(x) is a classification procedure, i.e., J takes
values 1,... ,m, and wy,, kK =1, ..., m, denote prior probabilities, then
under zero-one loss the performance of ¢ is measured by Bayes risk (or error
probability)

p(6) = ZwiP,»w # 0).

Lower bounds for error probability in terms of information measures have been
obtained by a wealth of authors (see, e.g., [2, 4, 8]). Shannon, Gallager, and
Berlekamp obtained a related inequality in the context of communication theory
(see [6]). A good survey of these results and of their use in asymptotic statistical
theory can be found in the monograph of Vajda [9].

In this paper the interest is in obtaining a lower bound on the error probability
when all likelihood ratios dP;/dP;, i # k, are bounded. Intuitively it is clear
that the closer the probability distributions are to one another, the more difficult

-the classification problem is and the larger the error probability is. This intuition
is confirmed by the inequality derived in the paper. The motivation for the
study of the bounded likelihood ratios family is in statistical inference with
finite-memory systems [5]. For instance, Hellman and Cover [7] have shown
that in the two-hypcthesis testing problem a finite-memory test statistic can
be consistent only if the distribution of the likelihood ratio is supported by
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the whole positive half-line. Thus in the bounded likelihood ratio situation
the error probability is bounded from below by a positive constant and the
mentioned inequality obtained in §3 shows how small this constant can be,
i.e., it provides a lower bound on error probability for the optimal recursive
procedure in the finite-memory setting at any observation stage. Also the choice
of the prior distribution minimizing this bound is suggested. The matrix of
bounding constants which solely determines this distribution is shown in §2 to
have a very special nature; namely, its inverse is an M-matrix.

2. M-MATRICES AND LINEAR PROGRAMMING

In this section we establish two propositions needed in the proof of the main
result but also of some independent interest.

Let (£, 1) be a measurable space. In the following f;, ... , f;, are positive
u-integrable functions such that for any positive ¢ and i # k
(2.1) uix: fi(x) # cfi(x)} > 0.
Suppose that all the ratios f;/f, are bounded, i.e.,
Sulx) _ 1
2.2 ai; < < — pu-as.
( ) ki = f;(x) — aik Au

Moreover, assume that a;;, are the largest quantities satisfying (2.2) and let
A be the m x m matrix formed by these numbers, 4 = (a;) .

Recall the definition of an M-matrix X ([1, Chapter 16, Exercise 13] or [3]).
A matrix C such that ¢ <0 for i # k is called an M-matrix if one of the
following equivalent conditions holds:

(1) C is nonsingular and all elements of C~! are nonnegative;

(2) for some positive numbers zi, ..., Zm, > po  CikZk > 0,1 = 1,
., m;

(3) all principal minors of C are positive.

Proposition 2.1. Under condition (2.1) the matrix A is nonsingular and A~" is
an M-matrix.

Proof. Tt follows from (2.2) that, for all i, k, ajay; < 1 and if, for some
i # k, ajar; = 1 then fi(x) = ay;fi(x) up-a.s., which contradicts (2.1).
Aikari < 1 = ajiag .

We start by establishing an analogue of this formula for a sequence of ma-
trices arising in the Gauss elimination algorithm.

Let aﬁg) = a;;, and define recursively

-1 -1 -1
(2.3) ay = af™ a7V jal

We assume here af,'},'” # 0. The positivity of these and all other coefficients

is implied by the following inequality which is proven by induction:

(n) (n) (n) (n)
(2.4) Qi Ay <4,y

where kK #i and k # .
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Assuming that (2.4) holds for n — 1 it can be rewritten in the form

o S)ann 1)[a(n Da (n 1) a:Z l)a’(('; 1)] (" l)[a(n l)a,(c’;( ) _ f";( 1)al(('; 1)]

—1)r .(n—1) (n 1) (n l
_akn [a a;; @iy n} ]>0

If af,"al"™" > aly""al’™", use the inequality

(n=1)

in

a <a(n Daln= ')/af,';'”

to estimate the left-hand side of (2.5) as

ann l)[a(n 1) _(n—-1) (n—1) (n 1) _(n—-1) (n—1)

-1
Qe — Ay ak ;o 1-a; 'al, Ay
1 1 1 1 1 1) 1 -1 -1
+af," ) (n ) (n ) (n )/a(n ) a’(('; [a('l )afj 1) aflnj )a;(_z )]
[a n—1) 1(7 1) a(n 1) (n 1) ][a(n 1) amm 1) a]((’:, l)a(n 1) ]/a(n 1) > 0.

If af,','( b 8‘ < a(” l)aﬁ, y ' use the inequality

-1 1) 1 1
a™" > gl Valr=Y jaln=Y

and estimate the left-hand side of (2.5) from below as

ai{; l)al(j )al(c']l( 1) aSm )al((nj 1) ('l l)/a(n 1)

(n=1) (n—1) (n—1) (n— l) (" 1) _(n—1)
—Qiy  Apj Gy +a;, ‘ay ak/

[a(n 1) (r; 1) af,']l( l)al(cnj l][an 1) 81 1) _ (n 1) (n 1]/a
Thus (2.4) holds and it follows that a\s " > 0. In particular the matrix A4
is nonsingular and all principal minors of A are positive. To prove that A~! is
an M-matrix it suffices now to show that its off-diagonal elements are negative.
Let A4, be the k, j cofactor of matrix 4. Since A~' = (4;/|4]), one
must demonstrate that, for i # k, A;; <O0.

Assume for concreteness sake that i < k. Transform elements of A re-
peatedly after (2.3), i.e., subtract the multiples of rows 1,... ,k — 1 and
k+1,..., m so that the only nonzero element in the jth columnis a;;, j =
1,...,i—1,k+1,...,m, which is positive. Therefore, the sign of Ay; is
that of the determinant of the matrix

i1 -0 Gk
Qivli+t  *°° Qiyik
Qe—1i+1  --- Qi1

whose elements satisfy (2.4).

Applying the same procedure to columns of this matrix we see that if i + k
is even, the sign of its determinant coincides with the sign of a;_;; (which is
positive) and if i + k is odd, this sign equals that of the determinant

Q-2 k-1 Qk—1 k-1
k-2 k Ak—1k

which is negative. O
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Because of Proposition 2.1 one can always find a vector w with positive
coordinates, w > 0, such that (4T)~'w > 0. Here AT denotes the transposed
matrix which is an M-matrix simultaneously with 4.

In the sequel (z, w) = 2;’;, z;w; will denote the inner product of two vec-

tors z=(zy,...,2z,)" and w = (wy, ... ,wm)". Also ¢j,j=1,...,m,
will denote the basis vectorsand e = 3" ¢; = (1, ..., nr.

Proposition 2.2. Under the conditions of Proposition2.11let R, , k=1, ... , m,
be a partition of . Put w= ([ fidu, ..., [ fx du)T and assume that

(2.6) (AT)"le > 0.

Then

> [ fdusaw,e)
kR
Proof. One has
1
Zx=| fdu<— | fidu,
R Qi JR,
so that

> iz < Z/ Jidu=w;.
k K YRk

In other terms

(2.7) Az <w, z>0,

and the determination of the maximum of the linear function ), z; = (z, e)
over the convex set determined by (2.7) presents a classical problem of linear
programming.

Condition (2.6) guarantees that the inequality (z, e) < (4~'w, e) is a corol-
lary of (2.7), and this proves Proposition 2.2 which now also immediately fol-
lows from the duality theorem. O

If (2.6) does noi hold then (z, e) takes values larger then (4~ 'w, e) on the
set (2.7). This fact follows from the Farkas Lemma, which together with the
fundamental theorem of linear programming also can be used to show that

max(z, e) = max{(4; 'w’, ') : (A7)~ 'e’ > 0}

where A, denotes a submatrix of 4 obtained by deleting some rows and
columns of A4 and ¢!, w' denote the corresponding subvectors of ¢ and w.
In particular for m =2

(I —ay)w; + (1 —ap)w;

’ ayp, ay < la
max(z, e) = I =anan
’ - wy, a;p > 1 >
wsy, a > 1.

It is worth noticing that the property that the set {x > 0,: CTx < y} is
bounded for any y > 0 and the nonsingularity of C characterizes M-matrices
(see [3, p. 138]).
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3. MAIN RESULT

Here p;, ... , pm will be different probability densities over (2, u), whose
ratios are bounded:
pe(x) . 1
- Pz( )~ b
and B will denote the matrix formed by the quantities b;, which are assumed
to be the largest possible. Also let w = (w, ... , w,)T be the vector of prior
probabilities.
If d,(x) is the Bayes estimator of the finite-valued parameter i, i = 1,
, m, then its Bayes risk p(J,) has the form

ZwP ;éz_l—ZwP (8o(x) = i).

by; < u-a.s.

Theorem 3.1. Assume that

(3.1) (BH~'w > 0.

Then

(3.2) p(d,) > 1—(B e, w).

Proof. One has with R; = {x:d,(x)=1i}, i=1,... ,m,

S wiP6o(x) =) = 3 /R f; du

where fi(x) = w;p;(x). Therefore, conditions of Propositions 2.1 and 2.2 are
met with a;; = b, w;/wy . Also the determinants of the matrices 4 and B are
equal, |4| = |B|, and if Ay; is the k, i cofactor of matrix 4 and By; is the
same cofactor of B, then Ay; = By;w;/wy . Thus the inverse matrix A~! has

the form
A~ = (Ak1> _ <Bk1 wl>
4] 1Bl wy )
and condition (2.6) is tantamount to (3.1).
Thus Proposition 2.2 implies that

> wiPi(8,(x) = i) < (47w, e) =Y wiBy/|B| = (B")'w,e). O
ik

Theorem 3.1 is false without condition (3.1). Indeed if w tends to a basis
vector e;, then p(d,) — 0 but (B~ le, e;) < 1.

If p;,i=1,..., m, is the joint density for a sequence of n i.i.d. random
variables with bounded likelihood ratios then b = B and

lim inf [p(d,)]"/" > max Bj.
n—co ik

Therefore, in the situation when a random sample is observed, the exponen-
tial rate of the error probability cannot exceed —logmax;=4 Bk (see [8] for a
similar inequality).




1312 A. L. RUKHIN

If m =2, then according to Theorem 3.1

wi(1 = big) + wy(l — byy)  wibiy + waby — biaby

3.3 o) >1— =
(3:3) p%) 2 1 — bizby 1 — biabyy

provided that

wy > byywy > bypbyw.
Also if w; < byyw,, p(dy) > 1 —wy, and if wy < bpw,, p(d,) > 1 —wy.
For w; =w; =1

biz + by — 2b12by,

3.4 O,) >
( ) p( 0)-— 2(1—b12b21)
When by, = by =b,0< b <1, (3.4) reduces to the inequality
b
p(0o) > b

which shows that for b close to 1 the Bayes rule cannot be much more efficient
than pure guessing (in which case the error probability is equal to %). The
smaller the b, i.e., the wider the range of the likelihood ratio, the smaller the
Bayes risk could be.

As an example let P;, i =1, 2, be two binomial distributions with proba-

bilities p;, p; < p>. Then

n\" l—pz>"
b= (2Y) . by =
12 (Pz) 2 (l—m

and according to Theorem 3.1 one has {Jd,(x) =1} = {x:x < ¢} with

1- 1-
o= nton 17t tos [ 50
so that
PG =2+ 0= )= 3 (1)prt - o+ 5 (%) 31 -y
x>c x<c
by + by — 2b|2b21
- 1 —b1yby

If n =1 this reduces to an equality which shows that the bound (3.3) is sharp.
As another example consider the classification problem for two Cauchy dis-
tributions with the location parameter values # and —f. An easy calculation

shows that
bp=by =1 +202—20V1+02

and according to (3.4)
0

1
AR eyl

This inequality shows that for small values of 6 when the classification problem
is “difficult”, the Bayes rule cannot have the error probability much different
from % , and it also gives the correct rate =2 of the error probability for large

values of 6.
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It is worth noticing that inequality (3.2) is useful even if some b;, vanish.
For instance when p;(x) = A;exp(—4;x) for positive x with, say, 4; < 4y,
then by; =0, bz = 41/42 and, for any probability w,, p(d,) > wii;/4;.

Also observe that the bound (3.3) is larger than the lower bound for
the error probability of the recursive time-invariant classification rule
obtained by Hellman and Cover [7]. Indeed their bound has the form
(24/ bi2byyww, — blzbzl)/(l - b12b21) which cannot exceed (3.3).

Now we derive the form of the prior distribution which minimizes (3.2).

Theorem 3.2. Under conditions of Theorem 3.1
1 1
3.5 B~ le, w) < max = .
(3:3) ( )< m b Xy b

If | is defined by (3.5) uniquely then the equality in (3.12) is attained if and only
if w=BTe//(Be),.

Proof. Let y = (BT)~'w > 0. Then

(3.6) 1=(BTy,e)=(y, Be).

The maximizatior of the linear function (B~ !e, BTy) = (e, y) under condition
(3.6) is also a linear programming problem whose solution is y = ¢;/(Be);. O

If there are several values of / satisfying (3.5) then any vector w attaining
equality in (3.5) must be a convex combination of the vectors BTe;/(Be), .

Since BT is a matrix with positive elements, it has the largest positive eigen-
value r with an eigenvector w with positive components. For such w

1 1
-1 = — = —
(B e,w)—r(e,w) p

It follows from (3.5) that

1 1
—<max ————,
r - i zr b,'k
i.e., r > min; ), by which is of course a known bound on the largest eigenvalue
[1, Chapter 16, §8].
If m =2, the prior distribution from Theorem 3.2 has the form

1 b2 .
= — = fb
w) T35, w, 55, if b1z < by
and
by, 1 .
W= ——, wWy=—-—  if by > byy.
! 1 + by 2 1 + by 12.= 721
In the binomial example, if n=1, py <p; <}
w) = __?_I_ , Wy = P2 A
D+ D2 D1+ D

so that the “more difficult” value of p gets larger weight.
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