STRONGLY EXPOSED POINTS IN LEBESGUE-BOCHNER FUNCTION SPACES

ZHIBAO HU AND BOR-LUH LIN

(Communicated by Dale Alspach)

ABSTRACT. It is a result of Peter Greim that if f is a strongly exposed point of the unit ball of Lebesgue-Bochner function space $L^p(\mu, X)$, 1 , then <math>f is a unit vector and $f(t)/\|f(t)\|$ is a strongly exposed point of the unit ball of X for almost all t in the support of f.

We prove that the converse is also true.

Throughout we assume that X is a Banach space, $1 < p, q < \infty$ with 1/p + 1/q = 1, and (Ω, Σ, μ) is a positive measure space. We use S_X and B_X to denote the unit sphere and the unit ball in X respectively and use μ^* to denote the outer measure associated with μ . For a subset K of X we use str-exp K to denote the set of strongly exposed points of K. Recall that X is a strongly exposed point of K if $X \in K$ and there exists X^* in X^* which strongly exposes K at X, that is, $\sup X^*(K) = X^*(X)$ and, whenever $\{x_n\} \subset K$ and $\lim_n X^*(x_n) = X^*(X)$, $\lim_n X_n = X$.

Johnson [J] and Greim [G1, G2] studied the strongly exposed points in Lebesgue-Bochner function spaces $L^p(\mu, X)$. In [G1, G2], it is shown that, for $f \in \text{str-exp } B_{L^p(\mu, X)}$, it is necessary and, in case X is smooth, is also sufficient that, for almost all t in the support of f (supp f), $f(t)/\|f(t)\| \in \text{str-exp } B_X$ and $\|f\| = 1$. The purpose of this note is to show that these conditions are sufficient in general (Theorem 7).

Strongly exposed points can be described in terms of slices. For $K \subset X$, the slice of K determined by the functional x^* in X^* and $\delta > 0$ is the subset of K given by

$$S(x^*, K, \delta) = \{x \in K : x^*(x) > \sup x^*(K) - \delta\}.$$

It is obvious that x^* strongly exposes K at x if and only if for any $\varepsilon > 0$ there is $\delta > 0$ such that diam $S(x^*, K, \delta) < \varepsilon$ and $x \in S(x^*, K, \delta)$, where diam $S(x^*, K, \delta)$ is the diameter of the set $S(x^*, K, \delta)$.

The key to our discussion is the following characterization of strongly exposed points "exclusively" in terms of slices (i.e., it does not use strongly exposing functionals): an element x in K is a strongly exposed point of K if and only if there exist $\varepsilon_n > 0$ and $\delta_n > 0$, with $\lim_n \varepsilon_n = 0$ and $\lim_n \delta_n = 0$, and

Received by the editors April 10, 1992 and, in revised form, July 21, 1992.

1991 Mathematics Subject Classification. Primary 46B20, 46E40.

Key words and phrases. Lebesgue-Bochner function space, strongly exposed point, slice.

a bounded sequence $\{x_n^*\} \subset X^*$, such that x belongs to each $S(x_n^*, K, \delta_n)$ and diam $S(x_n^*, K, \delta_m) \le \varepsilon_m$ for $n \ge m \ge 1$. Lemma 2 is a variation of this observation for Lebesgue-Bochner function spaces.

Lemma 1. Let $f \in L^p(\mu)$ such that $f(t) \geq 0$ for all t in Ω . If $\{f_{\lambda}\}$ is a net in $L^p(\mu, X)$ such that $\{\|f_{\lambda}(\cdot)\|\}$ converges to f in $L^p(\mu)$ then there is a net $\{g_{\lambda}\}$ in $L^p(\mu, X)$ such that $\|g_{\lambda}(t)\| = f(t)$, for all t and λ , and $\lim_{\lambda} \|f_{\lambda} - g_{\lambda}\| = 0$. Proof. Pick x in S_X . For each λ , let $E_{\lambda} = \{t : t \in \Omega \text{ and } f_{\lambda}(t) = 0\}$ and define

$$g_{\lambda}(t) = \begin{cases} f(t)x, & t \in E_{\lambda}, \\ f(t)f_{\lambda}(t)/||f_{\lambda}(t)||, & t \notin E_{\lambda}. \end{cases}$$

Then $||g_{\lambda}(t)|| = f(t)$ and $||f_{\lambda}(t) - g_{\lambda}(t)|| = |||f_{\lambda}(t)|| - f(t)|$ for all t and λ . Hence, $g_{\lambda} \in L^{p}(\mu, X)$ and $\lim_{\lambda} ||f_{\lambda} - g_{\lambda}|| = \lim_{\lambda} |||f_{\lambda}(\cdot)|| - f|| = 0$. Q.E.D.

For each $f \in L^p(\mu, X)$, we denote by S(f) the set

$$\{g \colon g \in L^p(\mu, X) \text{ and } \|g(t)\| = \|f(t)\| \text{ for all } t \text{ in } \Omega\}.$$

Lemma 2. Suppose $f \in S_{L^p(u,X)}$. Then the following are equivalent.

- (1) $f \in \operatorname{str-exp} B_{L^p(\mu, X)}$.
- (2) There exist $\varepsilon_n > 0$ and $\delta_n > 0$, with $\lim_n \varepsilon_n = 0$ and $\lim_n \delta_n = 0$, and $\{T_n\}$ in $B_{L^p(\mu, X)^*}$ satisfying

$$T_n(f) > 1 - \delta_n$$
, and for $m \le n$, if $g \in S(f)$ and $T_n(g) > 1 - \delta_m$, then $||f - g|| \le \varepsilon_m$.

Moreover, if (2) is true, then every weak* cluster point of $\{T_n\}$ strongly exposes $B_{L^p(\mu,X)}$ at f.

Proof. It is obvious that (1) implies (2). To prove the converse is true, let T be a weak* cluster point of $\{T_n\}$. Then T(f) = 1 and $||T|| \le 1$. Thus

$$||T|| = 1 = T(f) = \sup T(B_{L^p(\mu, X)}).$$

Suppose $\{f_n\}$ is a sequence in $B_{L^p(\mu,X]}$ such that $\lim_n T(f_n)=1$. Then $\lim_n T(f_n+f)=2$. It follows that, in $L^p(\mu)$, $\lim_n \|\|f_n(\cdot)\|+\|f(\cdot)\|\|=2$. By the uniform rotundity of $L^p(\mu)$, we have $\lim_n \|f_n(\cdot)\|=\|f(\cdot)\|$ in $L^p(\mu)$. Thus by Lemma 1 there is a sequence $\{g_n\}$ in S(f) such that $\lim_n \|f_n-g_n\|=0$. It is obvious that $\lim_n T(g_n)=1$. For any $\varepsilon>0$, choose $m\geq 1$ such that $\varepsilon_m<\varepsilon$. There is $n_1>m$ such that for $k\geq n_1$ we have $T(g_k)>1-\delta_m$ and $\delta_k<\delta_m$. For each $k\geq n_1$, since T is a weak* cluster point of $\{T_n\}$ and $T(g_k)>1-\delta_m$, there is $n\geq n_1$ such that $T_n(g_k)>1-\delta_m$. Thus $\|f-g_k\|\leq \varepsilon_m<\varepsilon$. Hence, $\lim_n \|g_n-f\|=0$. It follows that $\lim_n \|f_n-f\|=0$. Therefore, T strongly exposes $B_{L^p(\mu,X)}$ at f. Q.E.D.

In the proof of Lemma 4, we will construct a sequence $\{T_n\}$ like the one described in Lemma 2, but our $\{T_n\}$ will be from $L^q(\mu, X^*)$, which is naturally a subspace of $L^p(\mu, X)^*$. Note that for any $\varphi \in L^q(\mu, X^*)$ and $h \in L^p(\mu, X)$ the action of φ on h is given by $(\varphi, h) = \int_{\Omega} (\varphi(t), h(t)) \, d\mu(t)$ [DU]. For the proof of Lemma 4 we need

Lemma 3. Suppose (Ω, Σ, μ) is a probability space and $f \in B_{L^p(\mu, X)}$ with $f(\Omega) \subset B_X$. Let $0 < \delta < 1$ and $g : \Omega \to S_{X^*}$. If there are $\{t_n\} \subset \Omega$, $\{F_n\} \subset \Sigma$, and r > 0 satisfying:

- (1) diam $S(g(t_n), B_X, r) < \delta$ and $f(F_n) \subset S(g(t_n), B_X, r)$, and
- (2) $F_n \cap F_m = \emptyset$ for $n \neq m$ and $\mu(\bigcup_n F_n) > 1 2\delta/3$,

then, for any measurable functions $\varphi \colon \Omega \to B_X$ and $h \colon \Omega \to B_X$ with $\varphi |_{\bigcup_n F_n} = \sum_n g(t_n) \chi_{F_n}$ and $\int_{\Omega} (\varphi(t), h(t)) \, d\mu(t) \ge 1 - r\delta/3$, we have $||h - f|| < 3\delta^{1/p}$. Proof. Let $E_n = \{t \colon t \in F_n \text{ and } h(t) \notin S(g(t_n), B_X, r)\}$. Then $||h(t) - f(t)|| < \delta$ for $t \in F_n \setminus E_n$, and $(g(t_n), h(t)) \le 1 - r$ for $t \in E_n$. Since

$$1 - \frac{r\delta}{3} \leq \int_{\Omega} (\varphi(t), h(t)) d\mu(t)$$

$$= \int_{\Omega \setminus \bigcup_{n} E_{n}} (\varphi(t), h(t)) d\mu(t) + \int_{\bigcup_{n} E_{n}} (\varphi(t), h(t)) d\mu(t)$$

$$\leq \mu \left(\Omega \setminus \bigcup_{n} E_{n}\right) + \int_{\bigcup_{n} E_{n}} \left(\sum_{n} g(t_{n}) \chi_{F_{n}}, h(t)\right) d\mu(t)$$

$$= \mu \left(\Omega \setminus \bigcup_{n} E_{n}\right) + \sum_{n} \int_{E_{n}} (g(t_{n}), h(t)) d\mu(t)$$

$$\leq \mu \left(\Omega \setminus \bigcup_{n} E_{n}\right) + (1 - r)\mu \left(\bigcup_{n} E_{n}\right) = 1 - r\mu \left(\bigcup_{n} E_{n}\right),$$

we have $\mu(\bigcup_n E_n) \le \delta/3$. Thus

$$||h - f||^{p} = \int_{\Omega \setminus \bigcup_{n} F_{n}} ||h(t) - f(t)||^{p} d\mu(t) + \int_{\bigcup_{n} F_{n} \setminus E_{n}} ||h(t) - f(t)||^{p} d\mu(t)$$

$$+ \int_{\bigcup_{n} E_{n}} ||h(t) - f(t)||^{p} d\mu(t)$$

$$\leq 2^{p} \mu \left(\Omega \setminus \bigcup_{n} F_{n}\right) + \delta^{p} \mu \left(\bigcup_{n} F_{n} \setminus E_{n}\right) + 2^{p} \mu \left(\bigcup_{n} E_{n}\right)$$

$$\leq 2^{p} 2\delta/3 + \delta^{p} + 2^{p} \delta/3 = 2^{p} \delta + \delta^{p} < 3^{p} \delta. \quad \text{Q.E.D.}$$

If (Ω, Σ, μ) is a probability space and $f \in B_{L^p(\mu, X)}$ with $f(\Omega) \subset \text{str-exp } B_X$, then f must be a strongly exposed point of $B_{L^p(\mu, X)}$ as shown in Lemma 4.

Lemma 4. Suppose (Ω, Σ, μ) is a probability space and $f \in B_{L^p(\mu, X)}$ with $f(\Omega) \subset S_X$. If there is a function $g \colon \Omega \to S_{X^*}$ such that, for every $t \in \Omega$, g(t) strongly exposes B_X at f(t), then there exist $\varepsilon_n > 0$ and $\delta_n > 0$, with $\lim_n \varepsilon_n = 0$ and $\lim_n \delta_n = 0$, and $\{g_n\} \subset B_{L^q(\mu, X^*)}$ satisfying:

- (1) $g_n(\Omega) \subset g(\Omega)$, and $\int_{\Omega} (g_n(t), f(t)) d\mu(t) > 1 \delta_n$, and
- (2) for $n \ge k \ge 1$, if $h \in S(f)$ and $\int_{\Omega} (g_n(t), h(t)) d\mu(t) > 1 \delta_k$, then $||f h|| \le \varepsilon_k$.

Thus, by Lemma 2, we have $f \in \text{str-exp } B_{L^p(\mu, X)}$.

Proof. We may assume that $f(\Omega)$ is separable. For $k \ge 1$ and $m \ge 1$ set $\alpha_k = 2^{-k}$ and

$$D(m, k) = \{t: t \in \Omega \text{ and diam } S(g(t), B_X, \frac{1}{m}) < \alpha_k\}.$$

It is obvious that $D(m, k) \subset D(m+1, k)$. Since, for every $t \in \Omega$, g(t) strongly exposes B_X at f(t), we have $\Omega = \bigcup_m D(m, k)$ for each $k \ge 1$. Thus

for every subset A of Ω , we have

(*)
$$\mu^*(A) = \lim_{m} \mu^*(A \cap D(m, k)).$$

In particular, there is $m_1 \ge 1$ such that $\mu^*(D(m_1, 1)) > 1 - \alpha_1/3$. Choose a measurable set E(1, 1) such that $E(1, 1) \supset D(m_1, 1)$ and $\mu(E(1, 1)) = \mu^*(D(m_1, 1))$. Let $E(1, 2) = \Omega \setminus E(1, 1)$. Then $\{E(1, 1), E(1, 2)\}$ is a partition of Ω .

Assume, for $1 \le k \le n$, we have chosen $m_1 < \cdots < m_n$ and partitions $\{E(k, 1), E(k, 2), \ldots, E(k, k), E(k, k+1)\}$ of Ω so that, for $1 \le i \le k$,

(1)
$$\mu(E(k, i)) = \mu^*(A(k, i))$$

where
$$A(k\,,\,i)=E(k\,,\,i)\cap\left(\bigcap_{j=i}^k D(m_j\,,\,j)\right)$$
 , and (**)

(2)
$$\sum_{i=1}^{i} \mu(E(k,j)) > 1 - \frac{\alpha_i}{3}.$$

Since $\sum_{j=1}^{i} \mu^*(A(n, j)) > 1 - \alpha_i/3$ and $\mu(E(n, n+1)) + \sum_{j=1}^{n} \mu^*(A(n, j))$ = 1, by (*) there is $m_{n+1} > m_n$ such that

$$\sum_{i=1}^{i} \mu^*(A(n,j) \cap D(m_{n+1}, n+1)) > 1 - \frac{\alpha_i}{3} \quad \text{for } 1 \le i \le n$$

and

$$\mu^*(E(n, n+1)\cap D(m_{n+1}, n+1)) + \sum_{j=1}^n \mu^*(A(n, j)\cap D(m_{n+1}, n+1)) > 1 - \frac{\alpha_{n+1}}{3}.$$

Let $A(n+1, n+1) = E(n, n+1) \cap D(m_{n+1}, n+1)$, and let $A(n+1, j) = A(n, j) \cap D(m_{n+1}, n+1)$ for $1 \le j \le n$. Then, for $1 \le j \le n+1$, we can choose a measurable set E(n+1, j) such that

$$A(n+1, j) \subset E(n+1, j) \subset E(n, j)$$
 and $\mu(E(n+1, j)) = \mu^*(A(n+1, j))$.

Let $E(n+1, n+2) = \Omega \setminus \bigcup_{j=1}^{n+1} E(n+1, j)$. Then $\{E(n+1, 1), \ldots, E(n+1, n+1), E(n+1, n+2)\}$ is a partition of Ω which satisfies (**) for $1 \le i \le k = n+1$. By induction, there are natural numbers $m_1 < m_2 < \cdots$ and partitions $\{E(k, 1), \ldots, E(k, k+1)\}$ of Ω such that (**) is true for $1 \le i \le k \le n < \infty$.

Now fix $n \ge 1$. It is obvious that $f(A(n, k)) \subset \bigcup \{S(g(t), B_X, \alpha_n/3m_n): t \in A(n, k)\}$ for $1 \le k \le n$. Since $\{S(g(t), B_X, \alpha_n/3m_n): t \in A(n, k)\}$ is an open covering of f(A(n, k)) which is separable, there is a sequence $\{t_{nk}^j\}_{j\ge 1}$ in A(n, k) such that

$$f(A(n, k)) \subset \bigcup_{j} S\left(g(t_{nk}^{j}), B_{X}, \frac{\alpha_{n}}{3m_{n}}\right).$$

Define

E(n, k, j)

$$=E(n,k)\cap f^{-1}\left\{S\left(g(t_{nk}^{j}),B_{X},\frac{\alpha_{n}}{3m_{n}}\right)\setminus\bigcup_{i< j}S\left(g(t_{nk}^{i}),B_{X},\frac{\alpha_{n}}{3m_{n}}\right)\right\}.$$

Then E(n, k, j) is measurable, and $E(n, k, j) \cap E(n, i, j') = \emptyset$ if $i \neq k$ or $j \neq j'$. Since $A(n, k) \subset \bigcup_j E(n, k, j) \subset E(n, k)$ and $\mu(E(n, k)) = \mu^*(A(n, k))$, we have

$$(***) \qquad \mu\left(\bigcup_{j\geq 1} E(n,k,j)\right) = \mu(E(n,k)).$$

Thus by (**) we have $\mu(\bigcup \{E(n, k, j): 1 \le k \le n \text{ and } j \ge 1\}) > 1 - \alpha_n/3$. By definition, for all t in E(n, k, j) we have $(g(t_{nk}^j), f(t)) > 1 - \alpha_n/3m_n$. Hence,

$$\left(\sum_{1 \le k \le n, j \ge 1} g(t_{nk}^j) \chi_{E(n,k,j)}, f\right)$$

$$> \left(1 - \frac{\alpha_n}{3m_n}\right) \mu\left(\bigcup \{E(n,k,j) : 1 \le k \le n \text{ and } j \ge 1\}\right).$$

Since, for each t in Ω , (g(t), f(t)) = 1, there is a measurable function $g_n: \Omega \to g(\Omega)$ such that

$$g_n|_{\bigcup_{1 \le k \le n, j \ge 1} E(n, k, j)} = \sum_{1 \le k \le n, j \ge 1} g(t_{nk}^j) \chi_{E(n, k, j)}$$

and

$$(g_n, f) = \int_{\Omega} (g_n(t), f(t)) d\mu(t) > 1 - \frac{\alpha_n}{3m_n}.$$

Let $\varepsilon_n = 3(\alpha_n)^{1/p}$ and $\delta_n = \alpha_n/3m_n$. To complete the proof it remains to verify the following claim.

Claim. For $n \ge k \ge 1$, if $h \in S(f)$ and $\int_{\Omega} (g_n(t), h(t)) d\mu(t) > 1 - \delta_k$, then $||f - h|| \le \varepsilon_k$.

For $1 \le i \le k$ and $j \ge 1$, since $t_{ni}^j \in A(n, i) \subset D(m_k, k)$ (see (**)(1)), we have that

$$\operatorname{diam} S(g(t_{ni}^{j}), B_X, 1/m_k) < \alpha_k.$$

By (**) and (***), we have

$$\mu\left(\bigcup\{E(n, i, j): 1 \le i \le k \text{ and } j \ge 1\}\right)$$
$$= \sum_{i=1}^{k} \mu(E(n, i)) > 1 - \frac{\alpha_k}{3} > 1 - \frac{2\alpha_k}{3}.$$

It is obvious that

$$f(E(n, i, j)) \subset S(g(t_{ni}^{j}), B_X, \alpha_n/3m_n) \subset S(g(t_{ni}^{j}), B_X, 1/m_k)$$

and

$$g_n|_{\bigcup_{1\leq i\leq k,\,j\geq 1}E(n,\,i,\,j)}=\sum_{1\leq i\leq k,\,j\geq 1}g(t_{ni}^j)\chi_{E(n,\,i,\,j)}.$$

By Lemma 3, we can conclude that, if $h \in S(f)$ and $\int_{\Omega} (g_n(t), h(t)) d\mu(t) > 1 - \alpha_k/3m_k$, then $||f - h|| \le 3(\alpha_k)^{1/p}$; in other words, if $h \in S(f)$ and $\int_{\Omega} (g_n(t), h(t)) d\mu(t) > 1 - \delta_k$, then $||f - h|| \le \varepsilon_k$. Thus the claim holds. Q.E.D.

The general case can be reduced to special case in Lemma 4 by using Lemmas 5 and 6.

Lemma 5. Suppose (Ω, Σ, μ) is a positive finite measure space and $f \in S_{L^p(\mu, X)}$, and suppose there is M > 0 such that $1/M \le \|f(t)\| \le M$ for all t in Ω . Let $f_0(t) = f(t)/\|f(t)\|$ for $t \in \Omega$, and let $\mu_0 = \mu/\mu(\Omega)$. Then $f \in \text{str-exp } B_{L^p(\mu, X)}$ if and only if $f_0 \in \text{str-exp } B_{L^p(\mu_0, X)}$.

Proof. Suppose $f_0 \in \text{str-exp } B_{L^p(\mu_0, X)}$. Then there is $T \in S_{L^p(\mu_0, X)^*}$ which strongly exposes $B_{L^p(\mu_0, X)}$ at f_0 . There is a function g from Ω to X^* such that g is weak* measurable (that is, for every x in X the real-valued function $g(\cdot)(x)$ is measurable), $\|g(\cdot)\| \in S_{L^q(\mu_0)}$, and for any $\varphi \in L^p(\mu, X)$ [EV, IT],

$$T(\varphi) = \int_{\Omega} (g(t), \varphi(t)) d\mu(t).$$

By Theorem 2 [G2], we have $\|g(t)\|=1$ and g(t) strongly exposes B_X at $f_0(t)$ for almost all t in Ω . Let $h(t)=\|f(t)\|^{p-1}g(t)$ for all t in Ω . Then $\|h(\cdot)\|$ strongly exposes $B_{L^p(\mu)}$ at $\|f(\cdot)\|$, and h(t) strongly exposes B_X at $f(t)/\|f(t)\|$ for almost all t in Ω . By Theorem 2 [G2] the functional in $L^p(\mu, X)^*$ represented by h strongly exposes $B_{L^p(\mu, X)}$ at f.

The proof of the converse is similar. Q.E.D.

Lemma 6 (see [S, Theorem, p. 154]). Suppose $\{X_i\}_{i\in I}$ is a family of Banach spaces. Let $f = (f(i))_{i\in I} \in l^p(X_i)$. Then f is a strongly exposed point of the unit ball of $l^p(X_i)$ if and only if ||f|| = 1 and $|f(i)/||f(i)|| \in \text{str-exp } B_{X_i}$ for every $i \in \text{supp } f$.

Theorem 7. Suppose f is an element in $L^p(\mu, X)$. If ||f|| = 1 and $f(t)/||f(t)|| \in \text{str-exp } B_X$ for almost all $t \in \text{supp } f$, then $f \in \text{str-exp } B_{L^p(\mu, X)}$.

Proof. Let $E_0 = f^{-1}(0)$, and, for each integer $n \ge 1$, let

$$E_{2n} = \{t \colon t \in \Omega, \ 2^{n-1} < ||f(t)|| \le 2^n\}$$

and

$$E_{2n-1} = \{t : t \in \Omega, \ 2^{-n} < ||f(t)|| \le 2^{-n+1}\}.$$

It is obvious that $\{E_n\}_{0\leq n<\infty}$ is a partition of Ω such that, for each n, $0< n<\infty$, there is M>0 with $1/M\leq \|f(t)\|\leq M$, for all t in E_n , and f is zero on E_0 . Let μ_n be the restriction of μ to E_n , and let $X_n=L^p(\mu_n\,,\,X)$. Then the partition $\{E_n\}$ induces an isometry T from $L^p(\mu\,,\,X)$ onto $l^p(X_n)$, which is given by

$$T(h) = \{h|_{E_n}\}_{n\geq 1}$$
 for h in $L^p(\mu, X)$.

By Lemmas 4 and 5, $f|_{E_n}/\|f|_{E_n}\| \in \text{str-exp } B_{L^p(\mu_n,X)}$ whenever $f|_{E_n} \neq 0$. By Lemma 6 we have $f \in \text{str-exp } B_{L^p(\mu_n,X)}$. Q.E.D.

REFERENCES

- [DU] J. Diestel and J. J. Uhl, Jr., Vector measures, Math. Surveys, vol. 15, Amer. Math. Soc., Providence, RI, 1977.
- [EV] G. Emmanuele and A. Villani, Lifting of rotundity properties from E to $L^p(\mu, E)$, Rocky Mountain J. Math. 17 (1987), 617-627.
- [G1] P. Greim, Strongly exposed points in Bochner L^p-spaces, Proc. Amer. Math. Soc. 88 (1983), 81-84.
- [G2] _____, A note on strong extreme and strongly exposed points in Bochner L^p-spaces, Proc. Amer. Math. Soc. 93 (1985), 65-66.

- [IT] A. Ionescu Tulcea and C. Ionescu Tulcea, Topics in the theory of lifting, Springer-Verlag, New York, 1969.
- [J] J. A. Johnson, Strongly exposed points in $L^p(\mu, X)$, Rocky Mountain J. Math. 10 (1980), 517-519.
- [S] M. Smith, Rotundity and extremity in $l^p(X_i)$ and $L^p(\mu, X)$, Contemp. Math., vol. 52, Amer. Math. Soc., Providence, RI, 1983, pp. 143-162.

DEPARTMENT OF MATHEMATICS AND STATISTICS, MIAMI UNIVERSITY, OXFORD, OHIO 45056 E-mail address: zhu@miavx1.acs.muohio.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF IOWA, IOWA CITY, IOWA 52242 E-mail address: bllin@math.uiowa.edu