A DISC-HULL IN C²

H. ALEXANDER

(Communicated by Theodore W. Gamelin)

ABSTRACT. We construct a compact set in \mathbb{C}^2 whose disc-hull is a proper dense subset of its polynomial hull.

Let Z be a compact subset of \mathbb{C}^n . The polynomially convex hull of Z is the set

$$\widehat{Z} = \left\{ p \in \mathbb{C}^n \colon |P(p)| \le \max_{z \in Z} |P(z)|, \text{ for all polynomials } P \right\}.$$

Ahern and Rudin [1] have studied a particular subset of \widehat{Z} which they call the disc-hull $\mathscr{D}(Z)$ of Z. This is defined as follows. An H^{∞} -disc is the image of a nonconstant H^{∞} map $\Phi \colon U \to \mathbb{C}^n$. Here U is the open unit disc in \mathbb{C} . The boundary value function Φ^* exists almost everywhere on the unit circle bU. The H^{∞} -disc is said to have its boundary lying in Z if $\Phi^*(e^{i\theta}) \in Z$ for almost all $e^{i\theta} \in bU$. The disc-hull $\mathscr{D}(Z)$ is defined as the union of Z and all H^{∞} -discs with boundary in Z. The maximum principle implies that $\mathscr{D}(Z) \subseteq \widehat{Z}$.

Ahern and Rudin determined the disc-hull for some interesting classes of three-spheres in \mathbb{C}^3 . Their work led them to ask [1, $\S XI$]) whether $\mathscr{D}(Z)$ is always compact for Z compact in \mathbb{C}^n . The object of this note is to supply a negative answer. We shall construct a compact set Z in \mathbb{C}^2 such that $\mathscr{D}(Z)$ is a proper dense subset of \widehat{Z} .

The construction of Z will be based on Wermer's beautiful example [5] of a hull without analytic structure. The first such example was due to Stolzenberg [4]. Let z and w be the coordinate functions in \mathbb{C}^2 . Then according to [5] there exists a sequence of polynomials $\{P_n\}_{n\geq 1}$ on \mathbb{C}^2 and a sequence of positive numbers $\{\varepsilon_n\}_{n\geq 1}$ with the following properties. $P_n(z,w)$ is monic and of degree 2^n in w and $\{|P_{n+1}| \leq \varepsilon_{n+1}, |z| \leq \frac{1}{2}\} \subseteq \{|P_n| \leq \varepsilon_n, |z| \leq \frac{1}{2}\}$ for $n=1,2,3,\ldots$

Set

$$X = \bigcap_{n=1}^{\infty} \{ |P_n| \le \varepsilon_n \,, \ |z| \le \frac{1}{2} \}$$

Received by the editors July 30, 1992.

1991 Mathematics Subject Classification. Primary 32E20.

Supported in part by a grant from the National Science Foundation.

and set $\Sigma_n = \{P_n = 0, |z| \le \frac{1}{2}\}$. Then X is compact and is contained in the closure of $\bigcup_{n=1}^{\infty} \Sigma_n$ and $X = \hat{Y}$ where $Y = X \cap \{|z| = \frac{1}{2}\}$. The polynomial hull X contains no analytic structure. This is Wermer's example.

Now we can define $Z \subseteq \mathbb{C}^2$. Put $Y_n = \Sigma_n \cap \{|z| = \frac{1}{2}\}$. Then $\widehat{Y}_n = \Sigma_n$. We define $Z = Y \cup \bigcup_{n=1}^{\infty} Y_n$. We shall establish the following assertions.

- (1) Z is compact.
- (2) $\widehat{Z} = \widehat{Y} \cup \bigcup_{n=1}^{\infty} \widehat{Y}_n = X \cup \bigcup_{n=1}^{\infty} \Sigma_n$. (3) $\mathscr{D}(Z) = Z \cup \bigcup_{n=1}^{\infty} \Sigma_n$.
- (4) $\mathcal{D}(Z)$ is a proper subset of \hat{Z} .

Then, by (2) and (3), $\mathcal{D}(Z)$ is dense in \widehat{Z} and, by (4), therefore is not compact. To see (1) note that Z is bounded since Σ_n is contained in the compact set $\{|P_1| \le \varepsilon_1, |z| \le \frac{1}{2}\}$ for all n. Also Z is closed. In fact, if $p \in \overline{Z} \setminus Y$ then, as $Y_n \to Y$ by the choice of $\{\varepsilon_n\}$, there is a neighborhood of p which meets only a finite number of Y_n 's and which is disjoint from Y. It follows that p is a point of one of the closed sets Y_n .

Clearly the right-hand side of (2) is contained in \hat{Z} . We must show the reverse containment. Suppose that $p \in \widehat{Z}$ and $p \notin X = \widehat{Y}$. It follows from the definition of X that there exists $n_0 > 0$ such that $p \notin \{|P_{n_0}| \le \varepsilon_{n_0}, |z| = \frac{1}{2}\}^{\hat{}}$. Set $Q = Y \cup \bigcup_{n \geq n_0} Y_n$. Then $p \notin \widehat{Q}$ and $Q \subseteq Z$ is compact as in (1). Let σ be a Jensen measure on Z representing evaluation at p for polynomials [3]. Since $p \notin \widehat{Q}$, $\sigma(Z \setminus Q) > 0$. Put $P = P_1 \cdot P_2 \cdots P_{n_0-1}$. By the definition of Jensen measure

$$-\infty \le \log |P(p)| \le \int \log |P| \, d\sigma.$$

Since $Z \setminus Q \subseteq \bigcup_{n=1}^{n_0-1} Y_n$ and $P \equiv 0$ on this last set, the integral $= -\infty$ as $\sigma(Z \setminus Q) > 0$. Hence P(p) = 0. This implies that $p \in \Sigma_1 \cup \Sigma_2 \cup \cdots \cup \Sigma_{n_0-1}$. This gives (2).

Half of (3) is clear: Let $\Phi_n: U \to \Sigma_n \backslash Y_n$ be the universal covering map of an analytic component of $\Sigma_n \backslash Y_n$. In fact, $\Sigma_n \backslash Y_n$ is irreducible, but we do not need to verify this. Then Φ_n is an H^{∞} -disc with boundary in Y_n ; cf. [2, p. 337]. It follows that $\Sigma_n \subseteq \mathcal{D}(Z)$ for all n.

For the opposite inclusion, let $\Phi: U \to \mathbb{C}^2$ be an H^{∞} -disc with boundary in Z. Then $\Phi^*(e^{i\theta}) \in Z$ a.e. It cannot happen that $\Phi^*(e^{i\theta}) \in Y$ a.e., for then $\Phi(U) \subseteq \mathcal{D}(Y) \subseteq \hat{Y} = X$, in contradiction to Wermer's example—the nonexistence of analytic structure in X. Hence, there exists n_0 such that the set $E_0 = \{e^{i\theta} : \Phi^*(e^{i\theta}) \in Y_{n_0}\}$ has positive measure (and is measurable). Set $F = P_{n_0} \circ \Phi$, an H^{∞} function on U. Then $F^* = 0$ on E_0 implies $F \equiv 0$. Hence $\Phi(U) \subseteq \Sigma_{n_0}$. We conclude that $\mathscr{D}(Z) \subseteq \bigcup_{n=1}^{\infty} \Sigma_n \cup Z$.

To establish (4) we argue by contradiction and suppose that $\mathcal{D}(Z) = \overline{Z}$. Set $C_n = X \cap \Sigma_n \cap \{|z| < \frac{1}{2}\}$. By our supposition, $\bigcup C_n = X \cap \{|z| < \frac{1}{2}\}$. By the Baire category theorem some C_{n_0} contain a neighborhood of some point $q \in X$. Let Δ be a smoothly bounded parametric disc in Σ_{n_0} which contains a neighborhood of q in X. By the local maximum modulus principle, $q \in X \cap \Delta \subseteq (X \cap b\Delta)$. Since every proper subset of $b\Delta$ is polynomially convex and since $q \notin b\Delta$, it follows that $X \cap b\Delta = b\Delta$. But then $X \supseteq b\Delta \supseteq \Delta$, a contradiction to the fundamental property of X—it contains no analytic structure.

REFERENCES

- P. Ahern and W. Rudin, Hulls of 3-spheres in C³, Proceedings of the Madison Symposium in Complex Analysis, Contemp. Math., vol. 137, Amer. Math. Soc., Providence, RI, 1992, 1-29.
- 2. H. Alexander, B. A. Taylor, and J. L. Ullman, Areas of projections of analytic sets, Invent. Math. 16 (1972), 335-341.
- 3. E. Bishop, Holomorphic completions, analytic continuation and the interpolation of seminorms, Ann. of Math. (2) 78 (1963), 468-500.
- 4. G. Stolzenberg, A hull with no analytic structure, J. Math. Mech. 12 (1963), 103-112.
- 5. J. Wermer, Polynomial convex hulls and analyticity, Ark. Mat. 20 (1982), 129-135.

Department of Mathematics, University of Illinois at Chicago, 851 S. Morgan (M/C 249), Chicago, Illinois 60607-7045

E-mail address: u22330@uicvm.uic.edu