COMPLEMENTED COPIES OF c_0 IN $L^{\infty}(\mu, E)$

SANTIAGO DÍAZ

(Communicated by Dale Alspach)

ABSTRACT. Let E be a Banach space, and let (Ω, Σ, μ) be a measure space. We denote by $L^{\infty}(\mu, E)$ the Banach space of all E-valued μ -measurable essentially bounded functions on Ω , two functions being identified if they differ only on a locally μ -null set. We prove that if $L^{\infty}(\mu, E)$ contains a complemented copy of c_0 , then E contains a copy of c_0 .

Introduction

An important topic in the isomorphic theory of Banach spaces is to analyse when a Banach space contains a copy or a complemented copy of a certain classical Banach space such that c_0 , l_∞ , and so on. For the Banach spaces $L^p(\mu, E)$ of all vector-valued Bochner p-integrable functions ($1 \le p < +\infty$), this research has been done by Bourgain [1], Kwapien [2] (copies of c_0), Emmanuelle [5] (complemented copies of c_0), and Mendoza [9] (copies of l_∞). The aim of this paper is to study these problems for the Banach space $L^\infty(\mu, E)$. The notation and terminology used here can be found in [3, 4, 6].

Let (Ω, Σ, μ) be a measure space and E a Banach space. To avoid trivial cases, we assume that there is an infinite number of pairwise disjoint measurable sets of finite nonzero measure. A set $A \in \Sigma$ is said to be locally μ -null if $\mu(A \cap B) = 0$ for all $B \in \Sigma$ such that $\mu(B) < \infty$. A μ -measurable function f from Ω to E is said to be essentially bounded if for some real number $\varepsilon \geq 0$ the set $\{\omega \in \Omega : \|f(\omega)\| > \varepsilon\}$ is locally μ -null. Let ess $\sup(f)$ be the infimum of the set of all such numbers ε .

We denote by $L^{\infty}(\mu, E)$ the set of all essentially bounded μ -measurable functions from Ω to E, two functions identified if they differ only on a locally μ -null set. Under pointwise linear operations and the norm $\operatorname{ess\,sup}(\cdot)$, $L^{\infty}(\mu, E)$ is a Banach space.

Let $(\Delta_n)_{n\geq 1}$ be a sequence of pairwise disjoint measurable sets of finite nonzero measure and x be a nonzero element of E. It is clear that the linear subspace H of $L^{\infty}(\mu, E)$ defined as

$$H = \left\{ \sum_{n=1}^{\infty} \alpha_n x \chi_{\Delta_n}(\cdot) : (\alpha_n) \in l_{\infty} \right\}$$

Received by the editors July 21, 1992.

1991 Mathematics Subject Classification. Primary 46E40; Secondary 46B20.

Key words and phrases. Essentially bounded functions, complemented copies of c_0 .

is isomorphic to l_{∞} . Therefore, the only interesting question for $L^{\infty}(\mu, E)$ is about complemented copies of c_0 (l_{∞} is always complemented [7, p. 133]).

One fact is trivial: if E contains a complemented copy of c_0 , so does $L^{\infty}(\mu, E)$. On the other hand, Emmanuele [5] proved that if (Ω, Σ, μ) is not a purely atomic measure space and E contains a copy of c_0 (not necessarily complemented), then $L^p(\mu, E)$ ($1 \le p < \infty$) contains a complemented copy of c_0 . Looking carefully at his proof, one notices that the theorem is also true for $L^{\infty}(\mu, E)$. Therefore, to complete the study, we only have to answer the following question: Does E contain a copy of c_0 , whenever $L^{\infty}(\mu, E)$ contains a complemented copy of c_0 ? Theorem 1 tell us that the answer is positive.

MAIN THEOREM

We start by recalling some facts on $L^{\infty}(\mu, E)$. Let us denote by $\mathscr{L}(\Omega, E)$ the linear space of all μ -measurable bounded functions from Ω to E. Note particularly that they are essentially bounded. Given $f \in \mathscr{L}(\Omega, E)$, we can consider its supremum norm

$$||f||_{\infty} = \sup\{||f(\omega)|| : \omega \in \Omega\} < \infty.$$

Lemma 1 [6, p. 347]. Given $F \in L^{\infty}(\mu, E)$, there exists $f \in \mathcal{L}(\Omega, E)$ such that $f \in F$. Moreover, for every $f \in F \cap \mathcal{L}(\Omega, E)$, the following holds:

$$\operatorname{ess\,sup}(F) = \inf\{\|f\chi_{\Omega\setminus A}\|_{\infty} \colon A \text{ is a locally } \mu\text{-null set}\}.$$

Lemma 2. Given $F \in L^{\infty}(\mu, E)$ and $f \in \mathcal{L}(\Omega, E)$ such that $f \in F$, there exists a locally μ -null set A such that for every locally μ -null set B including A we have $\operatorname{ess\,sup}(F) = \|f\chi_{\Omega\setminus B}\|_{\infty}$.

Proof. By Lemma 1 and the characterization of the infimum, we can obtain a sequence $(A_n) \subset \Sigma$ of locally μ -null sets, such that

$$||f\chi_{\Omega\setminus A_n}||_{\infty} \leq \operatorname{ess\,sup}(F) + \frac{1}{n}.$$

Define $A = \bigcup_{n=1}^{\infty} A_n \in \Sigma$. Then, A is locally μ -null and for all $n \in \mathbb{N}$

$$||f\chi_{\Omega\setminus A}||_{\infty} \le ||f\chi_{\Omega\setminus A_n}||_{\infty} \le \operatorname{ess\,sup}(F) + \frac{1}{n}.$$

Therefore, $\|f\chi_{\Omega\setminus A}\|_{\infty}=\mathrm{ess}\,\mathrm{sup}(F)$. Finally, let B be a locally μ -null set including A. Then

$$||f\chi_{\Omega\setminus B}||_{\infty} \le ||f\chi_{\Omega\setminus A}||_{\infty} = \operatorname{ess\,sup}(F) \le ||f\chi_{\Omega\setminus B}||_{\infty}.$$

Theorem 1. If $L^{\infty}(\mu, E)$ contains a complemented copy of c_0 , then E contains a copy of c_0 .

Proof. If $L^{\infty}(\mu, E)$ has a complemented copy of c_0 , then there exists a sequence of (classes of) functions (F_n) in $L^{\infty}(\mu, E)$ and there exists a sequence (F'_n) of continuous linear forms on $L^{\infty}(\mu, E)$ verifying the following two statements:

(1) There are real positive numbers γ_1 , γ_2 such that

$$\gamma_1 \leq \operatorname{ess\,sup}\left(\sum_{n \in \sigma} F_n\right) \leq \gamma_2$$
, for all finite subsets σ of \mathbb{N} .

(2) For each $F \in L^{\infty}(\mu, E)$, $(F'_n(F))$ is a null sequence and the map

$$T: L^{\infty}(\mu, E) \rightarrow c_0, \quad F \mapsto T(F) = (F'_n(F))$$

is linear and continuous. Moreover, $F_n'(F_m) = \delta_{mn}$ for all $n, m \in \mathbb{N}$, where δ_{mn} denotes as usual the Kronecker delta.

According to Lemma 1, there exists $f_n \in F_n \cap \mathcal{L}(\Omega, E)$ for every $n \in \mathbb{N}$. We notice that for every $\sigma \subset \mathbb{N}$ finite

$$\sum_{n\in\sigma}f_n\in\sum_{n\in\sigma}F_n.$$

Therefore, bearing in mind Lemma 2 and, for every $\sigma \subset \mathbb{N}$ finite, there exists $A_{\sigma} \in \Sigma$ locally μ -null such that

$$\operatorname{ess\,sup}\left(\sum_{n\in\sigma}F_n\right) = \left\|\left(\sum_{n\in\sigma}f_n\right)\chi_{\Omega\setminus A_\sigma}\right\|_{\infty}.$$

Let us define $A = \bigcup \{A_{\sigma} : \sigma \text{ is a finite subset of } \mathbb{N} \}$. Since the cardinal of the set of all finite subsets of natural numbers is numerable, we can assure that $A \in \Sigma$ is locally μ -null. Lemma 2 also implies that

$$\operatorname{ess\,sup}\left(\sum_{n\in\sigma}F_n\right) = \left\|\left(\sum_{n\in\sigma}f_n\right)\chi_{\Omega\setminus A}\right\|_{\infty}.$$

Therefore, for every $\omega \in \Omega \setminus A$ and for every $\sigma \subset \mathbb{N}$ finite, we have that

$$\left\|\sum_{n\in\sigma}f_n(\omega)\right\|\leq \left\|\left(\sum_{n\in\sigma}f_n\right)\chi_{\Omega\setminus A}\right\|_{\infty}=\mathrm{ess\,sup}\left(\sum_{n\in\sigma}F_n\right)\leq \gamma_2.$$

In other words, the series $\sum_n f_n(\omega)$ is weakly unconditionally Cauchy in E. In fact, every subseries $\sum_k f_{n_k}(\omega)$ is weakly unconditionally Cauchy in E.

Claim. There are $\omega_0 \in \Omega \setminus A$ and a strictly increasing sequence $(n_k)_{k \geq 1}$ of natural numbers such that the series $\sum_k f_{n_k}(\omega_0)$ does not converge in E.

Assuming the Claim, the theorem follows from a well-known result due to Bessaga and Pełczinsky [3, p. 45].

Proof of the Claim. Suppose that, for every $\omega \in \Omega \setminus A$, the series $\sum f_n(\omega)$ is subseries convergent in E. This allows the following construction. Let M be a subset (not necessarilly finite) of $\mathbb N$. We denote by f(M) the following map from Ω to E:

$$\omega \mapsto f(M)(\omega) = \left\{ \begin{array}{ll} 0, & \omega \in A, \\ \sum_{n=1}^{\infty} \chi_{M}(n) f_{n}(\omega), & \omega \in \Omega \setminus A. \end{array} \right.$$

The reductio ad absurdum hypothesis assures that f(M) is well defined.

Since f_n is μ -measurable, so is $f_n \chi_{\Omega \setminus A}$. We also note that the μ -measurable functions $\sum_{k=1}^n \chi_M(k) f_k \chi_{\Omega \setminus A}$ converge pointwise to f(M); thus, f(M) is μ -measurable.

On the other hand, taking limits in (*), we deduce that

$$\sup\{\|f(M)(\omega)\|:\omega\in\Omega\}\leq\gamma_2.$$

All these details mean that, for every $M \subset \mathbb{N}$, $f(M) \in \mathcal{L}(\Omega, E)$.

At this point, we need more definitions and notation. Given $f \in \mathcal{L}(\Omega, E)$, we denote its equivalence class in $L^{\infty}(\mu, E)$ by [f]. We also denote by m_0 the linear subspace of l_{∞} formed by the sequences with a finite number of values. It is clear that every $\varphi = (\varphi(n)) \in m_0$ can be written in the form $\varphi(\cdot) = \sum_{i=1}^k \alpha_i \chi_{M_i}(\cdot)$, where the $\alpha_i \in \mathbb{K}$ (i = 1, ..., k) and the $M_i \subset \mathbb{N}$ are nonempty, pairwise disjoint and their union covers \mathbb{N} . The space m_0 endowed with the supremum norm is a barrelled space [3, p. 80].

Let us consider the following mapping

$$S: m_0 \to \mathcal{L}(\Omega, E), \quad \varphi = \sum_{i=1}^k \alpha_i \chi_{M_i} \mapsto S(\varphi) = \sum_{i=1}^k \alpha_i f(M_i).$$

Given $M = M_1 \cup M_2 \subset \mathbb{N}$ with $M_1 \cap M_2 = \emptyset$, we have $f(M) = f(M_1) + f(M_2)$. This shows that S is a well-defined linear map. Therefore, the map

$$[S]: m_0 \to L^{\infty}(\mu, E), \quad \varphi = \sum_{i=1}^k \alpha_i \chi_{M_i} \mapsto [S](\varphi) = \sum_{i=1}^k \alpha_i [f(M_i)]$$

is also well defined and linear.

Since m_0 is barrelled and $L^{\infty}(\mu, E)$ is a Banach space, the Closed Graph Theorem [7, p. 221] tell us that if [S] has closed graph, then [S] is continuous.

Thus, suppose that $(\varphi_p)_{p\in\mathbb{N}}$ is a null sequence in m_o and that the sequence $([S](\varphi_p))_p \subset L^{\infty}(\mu, E)$ converges to a certain $G \in L^{\infty}(\mu, E)$.

Take $g \in \mathcal{L}(\Omega, E) \cap G$. It is clear that

$$S(\varphi_p) - g \in \mathcal{L}(\Omega, E) \cap ([S](\varphi_p) - G).$$

By Lemma 2, for each $p \in \mathbb{N}$, we can obtain $C_p \in \Sigma$ locally μ -null such that

$$\|(S(\varphi_p)-g)\chi_{\Omega\setminus C_p}\|_{\infty}=\mathrm{ess\,sup}([S](\varphi_p)-G).$$

Let us set $C = \bigcup_{p=1}^{\infty} C_p \cup A \in \Sigma$. Since C is again locally μ -null and contains C_p , we have the fact that, for every $\omega \in \Omega \setminus C$,

$$||S(\varphi_p)(\omega) - g(\omega)|| \le ||(S(\varphi_p) - g)\chi_{\Omega \setminus C}||_{\infty} = \operatorname{ess\,sup}([S](\varphi_p) - G) \stackrel{p \to \infty}{\longrightarrow} 0.$$

Therefore, for every $x' \in E'$ and for every $\omega \in \Omega \setminus C$, we deduce that

$$\lim_{p\to\infty} |\langle x', S(\varphi_p)(\omega)\rangle| = |\langle x', g(\omega)\rangle|.$$

On the other hand, since $\omega \notin A$, the series $\sum_{n} \langle x', f_n(\omega) \rangle$ is absolutely convergent. If we write $\sum_{n=1}^{\infty} |\langle x', f_n(\omega) \rangle| = K(x') < \infty$, then

$$|\langle x', S(\varphi_p)(\omega)\rangle| \leq \sum_{n=1}^{\infty} |\varphi_p(n)\langle x', f_n(\omega)\rangle| \leq K(x') \|\varphi_p\| \stackrel{p\to\infty}{\longrightarrow} 0.$$

The above limits must coincide, so we conclude that $\langle x', g(\omega) \rangle = 0$ for every $x' \in E'$; thus, $g(\omega) = 0$. That is to say, g is zero except in a locally μ -null set; then G = 0 and the mapping [S] has closed graph.

Since m_0 is sequentially dense in l_∞ , we can extend [S] to a linear continuous map, which we denote $[S]^\infty$, from l_∞ to $L^\infty(\mu, E)$. In effect, given $\alpha \in l_\infty$, we can take a sequence $(\varphi_p)_{p \in \mathbb{N}}$ in m_0 which converges to α . It is clear that $([S](\varphi_p))$ is a Cauchy sequence in $L^\infty(\mu, E)$, so it converges to a

certain $F \in L^{\infty}(\mu, E)$. We define $[S]^{\infty}(\alpha) = F$. It is easy to check that $[S]^{\infty}$ is a well-defined linear continuous map.

Let us consider the following composition of functions $\Pi = T \circ [S]^{\infty}$. Π is a linear continuous mapping from l_{∞} to c_0 . Moreover, for all $n \in \mathbb{N}$,

$$\Pi(e_n) = T([S]^{\infty}(e_n)) = T([f_n \chi_{o_{\lambda,A}}]) = T(F_n) = (F'_m(F_n))_m = e_n$$

(e_n denotes the sequence which has values 1 in the n-place and vanishes in the other coordinates).

Since (e_n) is a basis for c_0 , we have $\Pi(\alpha)=\alpha$ for every $\alpha\in c_0$. On the other hand, given $\alpha\in l_\infty$, there must exist $(\beta_n)\in c_0$ such that $\Pi(\alpha)=\sum_{n=1}^\infty\beta_ne_n$. From this, it follows that

$$\Pi^{2}(\alpha) = \Pi\left(\sum_{n=1}^{\infty} \beta_{n} e_{n}\right) = \sum_{n=1}^{\infty} \beta_{n} \Pi(e_{n}) = \sum_{n=1}^{\infty} \beta_{n} e_{n} = \Pi(\alpha).$$

Therefore, Π is a linear continuous projection from l_{∞} onto c_0 , which is known to be impossible [10]. \square

Emmanuele's result leads one to think about the purely atomic case. In this line Leung and Räbiger [8] have studied the complemented copies of c_0 in the so-called l_∞ -sum $(\sum_{i\in I}\bigoplus E_i)_\infty$ of an arbitrary family of Banach spaces $(E_i)_{i\in I}$. We note that if (Ω, Σ, μ) is a σ -finite purely atomic measure space, then there must be a countable number of atoms in Σ , so $L^\infty(\mu, E)$ can be identified with the Banach space $l_\infty(E) = (\sum_{n\in\mathbb{N}}\bigoplus E)_\infty$ of all bounded sequences in E. Combining our results with Leung, Räbiger, and Emmanuele results, we can set up the following dichotomy.

Corollary 1. Let (Ω, Σ, μ) be a σ -finite measure space.

- (1) If (Ω, Σ, μ) is purely atomic, then $L^{\infty}(\mu, E)$ contains a complemented copy of c_0 if and only if E contains a complemented copy of c_0 .
- (2) If (Ω, Σ, μ) is not purely atomic, $L^{\infty}(\mu, E)$ contains a complemented copy of c_0 if and only if E contains a copy of c_0 .

REFERENCES

- J. Bourgain, An averaging result for c₀-sequences, Bull. Soc. Math. Belg. Sér. B 30 (1978), 83-87.
- 2. S. Kwapien, On Banach spaces containing c_0 , Studia Math. 52 (1974), 187-188.
- 3. J. Diestel, Sequences and series in Banach spaces, Springer-Verlag, New York, Berlin, Heidelberg, and Tokyo, 1984.
- N. Dunford and J. T. Schwartz, Linear operators, Part I: General theory, Wiley-Interscience, New York, Chichester, and Brisbane, 1988.
- 5. G. Emmanuele, On complemented copies of c_0 in L_X^p , $1 \le p < \infty$, Proc. Amer. Math. Soc. 104 (1988), 785-786.
- E. Hewitt and K. Stromberg, Real and abstract analysis, Springer-Verlag, New York, Heidelberg, and Berlin, 1965.
- 7. H. Jarchow, Locally convex spaces, Teubner, Stuttgart, 1981.

- 8. D. Leung and F. Räbiger, Complemented copies of c_0 in l_{∞} -sums of Banach spaces, Illinois J. Math. 34 (1990), 52-58.
- 9. J. Mendoza, Copies of l_{∞} in $L^p(\mu, X)$, Proc. Amer. Math. Soc. 109 (1990), 125–127.
- 10. R. J. Whitley, Projecting m onto c_0 , Amer. Math. Monthly 73 (1966), 285-286.

DEPARTAMENTO DE MATEMÁTICA APLICADA, UNIVERSIDAD DE SEVILLA, E.S. INGENIEROS IN-DUSTRIALES, AVDA. REINA MERCEDES S/N, 41012-SEVILLA, SPAIN E-mail address: madrigal@cica.es