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Dedicated to the memory ofPere Menal (1951 -1991)

Abstract. All rings in this paper are commutative, and ace j. (resp., ace © )

denotes the ace on annihilators (resp., on direct sums of ideals). Any subring

of an ace ± ring, e.g., of a Noetherian ring, is an ace ± ring. Together, ace ±

and ace © constitute the requirement for a ring to be a Goldie ring. Moreover,

a ring R is Goldie iff its classical quotient ring Q is Goldie.
A ring R is a Kerr ring (the appellation is for J. Kerr, who in 1990 con-

structed the first Goldie rings not Kerr) iff the polynomial ring R[x] has ace ±

(in which case R must have ace J.). By the Hilbert Basis theorem, if S is a

Noetherian ring, then so is S[x]; hence, any subring R of a Noetherian ring

is Kerr.

In this note, using results of Levitzki, Herstein, Small, and the author, we

show that any Goldie ring R such that Q = QC(R) has nil Jacobson radical

(equivalently, the nil radical of R is an intersection of associated prime ideals)

is Kerr in a very strong sense: Q is Artinian and, hence, Noetherian (The-

orems 1.1 and 2.2). As a corollary we prove that any Goldie ring A that is

algebraic over a field k is Artinian, and, hence, any order R in A is a Kerr

ring (Theorem 2.5 and Corollary 2.6). The same is true of any algebra A over

a field k of cardinality exceeding the dimension of A (Corollary 2.7).

Other Kerr rings are: reduced ace J. rings and valuation rings with ace ±

(see 3.3 and 3.4).

Introduction

A property of a Goldie ring R needed for the proof is found in [F2, Corol-
lary 3.7], which states that any ring R with the ace on annihilator ideals (=

ace ±) has semilocal quotient ring Q. Another property needed is the theorem

of Levitzki [Le] and Herstein and Small [HS]: any nil ideal in a (two-sided)

accj. ring is nilpotent. Finally we need a result of the author in [FI]: Any
finitely embedded ace x ring is Artinian.
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Any subring of an ace x ring satisfies ace x; however, the same does not
hold for the second defining condition of Goldie rings: (ace ®) = ace on direct

sums of ideals of R, a subring of a right Noetherian ring need not have ace ®.

1. Proof of Theorem 1.1

We first prove Theorem 1.1 and use it to prove Theorem 2.2.

1.1. Theorem. A commutative ring R is Artinian iff R is a Goldie quotient

ring with nil Jacobson radical.x

Proof. The necessity is classical. Conversely, as noted, any accx ring R has

a semilocal (Kasch) quotient Q = QC(R). Moreover, in any accx ring, every

nil ideal is nilpotent [HS, Le]. Thus, R = Q is semiprimary and, hence, has

essential socle S. By ace ®, \S\ < oo; hence, R is a finitely embedded ace x

ring. By [FI], R is Artinian

1.2. Corollary. If R is a commutative Goldie ring, with zero-dimensional Q =

QC(R), then Q is Artinian and, hence, R is Kerr.

2. The associated prime radical

The intersection of all prime ideals is a nil ideal N(R) called the prime or nil
radical. We let Assi? denote the set of associated prime ideals; Ass prime rad R

denotes the intersection

Ass prime rad R =    Q   P.
PeAssR

We also let MaxR denote the set of maximal ideals of R. Then J(R) =

CiineMaxR^ ls tne Jacobson radical. A ring R is a Kasch ring provided that
MaxR QAssR.

2.1. Proposition. If R is a Kasch ring, then

(1) AssR = MaxR;

hence,

(2) J(R) = Ass prime rad/?.

Moreover, R = QC(R) ■

Proof. This follows from the triviality that every ideal ^ R is contained in a

maximal ideal, so if P is an associated prime and R is Kasch, then P e Max R.

This proves (1) and (2). If x is a unit of R, then xR ^ R; hence, xR is

contained in some M e MaxR, so x is a zero divisor. Thus R = QC(R) ■

Note. As stated, any accx ring R has (semilocal) Kasch QC(R) [F2, Corol-

lary 3.7]. This is used in the proof of the following:

2.2. Theorem. A ring R has Artinian QC(R) iff R is a Goldie ring with nil
Ass prime rad R, that is, with

Ass prime rad R = nil rad R.

'Theorem 1.1 was proved in the Addendum [FI].
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Proof. If / is an ideal of R, then / is an annihilator of R iff IQ is an

annihilator of Q. Hence, / 6 AssR iff IQ e Ass Q. This also implies that if
K is an ideal of Q, then K n R e Ass Q iff K e Ass R and, hence, that

(Ass prime rad Q) n R = Ass rad R

and

(Ass prime rad R)Q = Ass rad Q.

Moreover, {/,},6a is a collection of independent ideals in R iff {/,(?},€A is
the same in Q.

Therefore, R has accx (resp., ace©) iff Q has the same property, and, by

the above note, Q is (semilocal) Kasch under either assumption: Q Artinian

or R Goldie. Therefore, by Proposition 2.1, Q has nil Jacobson radical iff R

has nil Ass rad R = Nil rad R. Then Theorem 1.1 applies to conclude the proof.

2.3. Corollary. If R is a Goldie ring with nil associated prime radical, then the

polynomial ring R[x] over R is Goldie with nil associated prime radical.

Proof. By the theorem, Q = QC(R) is Artinian and, hence,

Qi = Qc(R[x]) = Qc(Q[x])

is Noetherian and, in fact, Artinian by a theorem of Small [Sl], but this also
follows from Theorem 3.13 of [F2] which asserts for Q semilocal Kasch that
J(Q2) is nil when (and only when) J(Q) is. Then, by the theorem, Qi is

Artinian; hence, Ass rad R is nilpotent.

2.4. Corollary. Let R be a Goldie Kerr ring. Then xadQc(R[x]) is nil iff
Qc(R[x]) is Artinian and iff QC(R) is Artinian.

Proof. The proof follows from Theorem 1.1, Theorem 1.2, and Corollary 2.3.

This corollary justifies a remark made in [F2] to the effect that while radi?[x]

is nil, for any ring R, that h = rad Qi is not necessarily nil.

2.5. Theorem. An algebraic Goldie algebra R over afield k is Artinian.

Proof. It is known in an algebraic algebra R over a field k that every nonzero

divisor (= regular element) is a unit, that is, that Q = QC(R) ■ Moreover, by

[J, p. 19, Theorem 1 and Corollary], J(R) is a nil ideal, so R is Artinian by

Theorem 2.2.
Theorem 1.1 therefore implies that any non-Artinian Goldie algebra over a

field is transcendental, and in fact, in any algebra over a field, the elements of

J(R) axe either nilpotent or transendental (cf. [J, loc. cit.]).

2.6. Corollary. If A is a Goldie ring and QC(A) is an algebraic algebra over a

field, then A is a Kerr ring.

Proof. In general, a ring A is Goldie iff QC(A) is Goldie, so QC(A) is Artinian
by Theorem 2.5, so A is Kerr.

2.7. Corollary. If A is a Goldie ring and Q = QC(A) is an algebra over a field
k of cardinality exceeding the dimension of Q, then Q is Artinian; hence, A

is Kerr.

Proof. Same proof as for Corollary 2.6 using a theorem of Amitsur [J, p. 20,

Theorem 2] to deduce the J(Q) is nil.
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3. Commutative rings with accx

What happens if you drop half of the two Goldie conditions and consider

rings just with ace x ?

3.1. Theorem. If R is an accx quotient ring with nil radical, then R is

semiprimary.

Proof. In the proof of Theorem 1.1, using accx we first deduce that R is

semiprimary, and we use ace © only to conclude that R is finitely embedded.

3.2. Corollary. If R is an accx ring with

Ass prime rad R = nil rad R,

then QC(R) is semiprimary.

Proof. The proof follows in the same way as the proof of the theorem.

As noted in [F2, Corollary 3.7], an ace 1 ring R has semilocal Kasch quo-
tient ring Q. This is needed below.

3.3. Theorem (Added in proof). A reduced ace x. ring R is Kerr, in fact Q is

semisimple Artinian.

Proof. Since R is reduced, R has zero singular ideal, hence R has von Neu-

mann regular (=VNR) maximal quotient ring Qm = Qmax(R) (see, e.g., [La, p.

106, Proposition 2]). However, Qm D Q canonically, and the fact noted above

that Q is Kasch implies that Q = Qm (cf. [La, p. 113, Exercise 5]). Since a

semilocal VNR ring Q is semisimple Artinian, we see that R is Kerr.

3.4. Theorem (Added in proof). A valuation ring R with ace x. has Noetherian

quotient ring Q, and hence is Kerr.

Proof. By a theorem of Facchini (personal communication, anthologized in [F-

P, Corollary 6.11, p. 96]), any valuation ring R has FP-injective quotient ring

Q, and hence every finitely generated ideal of Q is an annihilator ideal, so the

ace -L in R, whence in Q, implies that Q is Noetherian.

3.5. Remarks (Added in proof). 1. If R is a ring with just one nontrivial

annihilator ideal, e.g., if R is a local ring with J2 = 0, then the same is true
of any polynomial ring R[X], in any number of variables; that is, I[X] is the

only nontrivial annihilator ideal. In fact, associated prime ideals of any ring R
extend to associated prime ideals of R[X], and the correspondence is bijective

[F2, Theorem 3.11].
2. If R is a ring with zero-dimensional Q, that Q is Artinian iff R is

Goldie follows from the results above and the fact that J(Q) is nil.

4. Notes

1. A theorem of Camillo [C] characterizes Noetherian R via Goldie rings:
R is Noetherian iff every factor ring is Goldie.

2. A theorem of Camillo and Guralnick [CG] shows that any ace x ring R

that is an algebra over a nondenumerable field is a Kerr ring. They prove that

this holds more generally if R is a ring whose center contains a nondenumerable
set S with 5 - t regular for every s ^ t e S.

3. The explicit statement of Corollary 1.2 was suggested by the referee.
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4. Kerr [K2] constructed the first Goldie ring R not embeddable in a

Noetherian ring. Moreover, the ring R is a Kerr algebra over an arbitrary

field.
5. If Q2 = Qc(R[x]) is self-injective, then Q2 and Q = QC(R) axe QF by a

theorem of Herbera and Pillay [HP].
6. See [R] in connection with ace x rings and Kerr and Camillo-Guralnick

rings. Also, see [S2] in connection with embedding rings in Artinian rings.

7. F. Cedo has constructed a Kerr ring R over which the power series ring
R(x) does not have ace ± (e-mail communication).

5. Open questions

1. Characterize Kerr rings.
2. If R is a Kerr ring, is R[x] ?
3. The answer to 2 is "yes" for the Camillo-Guralnick Kerr rings.
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