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Abstract. Let XN{c) denote the TV-dimensional simply connected space form

of constant curvature c. We consider a problem to classify those minimal

surfaces in XN(c) which are locally isometric to minimal surfaces in X*{c).

In this paper we solve this problem in the case where N = 4 , and give a result

also in higher codimensional cases.

0. Introduction

Let XN(c) denote the iV-dimensional simply connected space form of con-

stant curvature c, and let M be a minimal surface in XN(c) with Gaussian cur-

vature K (<c) with respect to the induced metric ds2 . When N = 3, M sat-

isfies the Ricci condition with respect to c, that is, the metric ds2 = \/c - K ds2

is flat at points where K < c. Conversely, every 2-dimensional Riemannian

manifold with Gaussian curvature less than c which satisfies the Ricci condi-

tion with respect to c, can be realized locally as a minimal surface in X3(c)

(see [10]). Then it is an interesting problem to classify those minimal surfaces

in XN(c) which satisfy the Ricci condition with respect to c, that is, to clas-

sify those minimal surfaces in XN(c) which are locally isometric to minimal

surfaces in X3(c), or to compare locally the Riemannian structures of minimal

surfaces in XN(c) with those of minimal surfaces in X3(c). In the case where

c = 0, Lawson [11] solved this problem completely (cf. Chapter IV of [12]). In

[13], with some global assumptions, Naka (= Miyaoka) obtained some results

in the case where c > 0. In [ 14] we discussed exceptional minimal surfaces in

XN(c) which satisfy the Ricci condition with respect to c.

The main purpose of this paper is to solve the above problem in the case

where N = 4.

Theorem 1. Let M be a minimal surface in X4(c) with Gaussian curvature

K with respect to the induced metric ds2. Suppose that the metric ds2 =

\/c- K ds2 is flat at points where K < c.  Then M lies in a totally geodesic

X3(c).

Received by the editors October 1, 1992.

1991 Mathematics Subject Classification. Primary 53A10.

©1994 American Mathematical Society
0002-9939/94 $1.00+ $.25 per page

573



574 MAKOTO SAKAKI

Remark 1. (i) When c = 0, Theorem 1 is included in [11].
(ii) For c > 0, there are flat minimal surfaces in X5(c) not lying in any

totally geodesic X4(c), which automatically satisfy the Ricci condition with

respect to c (see [2, 8]). So, in the case where c > 0, Theorem 1 is not true if

we replace Xa (c) by X5(c).

We cannot apply the method used to prove Theorem 1 to higher codimen-

sional cases directly. However in §3, with an additional assumption, we will

give a result in higher codimensional cases.

1. Preliminaries

Let M be a 2-dimensional Riemannian manifold isometrically immersed in

XN(c) with Gaussian curvature K with respect to the induced metric. Let A

be the second fundamental form of M. We denote by TPM and TpM the

tangent space and the normal space of M at p, respectively. A point p on

M is called isotropic if the ellipse of curvature {A(X, X) e T^M ; X e TPM,

\X\ = 1} at p is a circle. We say that M is isotropic if each point on M is

isotropic.
At each point p on M,we choose orthonormal bases {ex, e2} and {e^, ... ,

eu) for TPM and TpM, respectively. We shall make use of the following

convention on the ranges of indices: 1 < i, j, k <2, 3 <a, ß < N. Let hfj

be the components of A . We denote by i?»( the components of the normal

curvature tensor of M. Then

k

Following [5], we define the normal scalar curvature K„ of M by

*«= E (r%j)2 = \ E (R%j)2-
i<j ,a<ß i,j,a,ß

When N = 4, we define the normal curvature Kv of M by Kv = Rln , which

changes sign according to the orientation of the bases.

Assume further that M is a minimal surface. Then we may choose the bases

{e¡} and {ea} so that the components hfj satisfy

(*tf)=(J    _°a)'     (ä«)=(J    o)'     ̂ 7) = (°)       for a > 5,

for some X and p. It is easy to see that (c-K)2-K„ > 0, and the point p is

isotropic if and only if |A| = \p\, which is equivalent to that (c - K)2 - K„ = 0.

Similarly, when ;V = 4, c - K > \K„\, and p is isotropic if and only if

c-K = \K„\.

2. Proof of Theorem 1

Proof of Theorem 1. Assume that M lies fully in X4(c), namely, does not lie
in a totally geodesic X3(c). Then K < c and Kv ^ 0 open densely, where

Kv denotes the normal curvature of M (see Lemma 2 of [7]). As the metric

ds2 = \/c -K ds2 is flat at points where K < c, we have
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or equivalently,

(1) Alog(c-Ä') = 4Ä'

at points where K < c, where A denotes the Laplacian of M with respect to

ds2.

If M is isotropic, then noting that an isotropic minimal surface lying fully

in X4(c) is exceptional in the sense of [6], we have by Theorem A of [6],

(2) Alog(c - K) = 6K - 2c

at points where K < c. From (1) and (2) we have a contradiction. So M is

not isotropic.

Set
Mx = {p e M ; K < c, Kv ¿ 0, p is not isotropic},

which is an open dense subset of M. By Theorem 1 of [4],

(3) A\o%(c-K + Ku) = 2(2K-Kv)

and

(4) Alog(c - K - Kv) = 2(2K + Kv)

on Mx. Set F = Kv/(c - K). Then by (1), (3), and (4),

(5) AF = -2(c-K)F(l+F2)

and

(6) \VF\2 = 2(c-K)F2(l-F2)

on Mx, where V is the Riemannian connection of M with respect to ds2.

We denote by K, V, and A the Gaussian curvature, the Riemannian connec-

tion, and the Laplacian of Mx with respect to the metric ds2 = (c - K) ds2 ,

respectively. We note that the metric ds2 is nondegenerate on Mx . Then

(7) K = -^-- —1—Alog(c -K) =
c-K     2(c-K)      ov '     K-c

on Mx , where we use (1) for the second equality. Equations (5) and (6) are

rewritten as follows:

(8) AF = -2F(l+F2)=:P(F)

and

(9) \VF\2 = 2F2(1-F2)=:Q(F)

on Mx. As 0 < \F\ < 1 on Mx, F is not constant on Mx by (9). Hence we
have

(10) QK + (P- Q')(P - X2Q') + Q(P' - X2Q") = 0

on Mx, where the prime denotes the differentiation with respect to F (see [3,

p. 164; 9, p. 136]). Noting that 0 < \F\ < 1 on Mx, we have by (7)-(10),
K = 8c/9 on Mx and, by continuity, on M. As K < c on Mx, we find that

c > 0. Now we have a contradiction because there are no minimal surfaces

with constant curvature 8c/9 in X4(c), where c > 0 (see [2, 9]).

Therefore, M lies in a totally geodesic X3(c).
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3. Higher codimensional cases

In this section we prove the following.

Theorem 2. Let M be a minimal surface in XN(c) with Gaussian curvature

K with respect to the induced metric ds2. Suppose that the metric ds2 =

y/c - K ds2 is flat at points where K < c and the normal scalar curvature of M

is constant. Then either (i) M lies in a totally geodesic X3(c), or (ii) c > 0

and M is flat.

Remark 2. (i) A minimal surface M in XN(c) lies in a totally geodesic X3(c)

if and only if the normal scalar curvature of M is identically zero (see Lemma

2 of [7]).
(ii) Flat minimal surfaces in XN(c) where c > 0 are classified (see [2]). By

Theorem 3.1(2) of [2] and Proposition l(iii) of [8], we find that all of them
have constant normal scalar curvature.

(iii) Minimal surfaces with constant normal scalar curvature in space forms

are studied in [1] and [5].

Proof of Theorem 2. Assume that M does not lie in a totally geodesic X3(c).

Then K < c open densely and the normal scalar curvature Kn of M is a

positive constant (see Remark 2(i)).

When M is isotropic, we have (c-K)2-K„ = 0 on M, and K is a constant

less than c. From the hypothesis that the metric ds2 = \/c - K ds2 is flat at

points where K < c, we have c > 0 and K = 0 on M.
When M is not isotropic, set M2 = {p e M ; K < c, p is not isotropic},

which is an open dense subset of M. As the metric ds2 = Vc - K ds2 is flat
at points where K < c, we have

(11) Alog(c-*) = 4*

on M2, where A denotes the Laplacian of M with respect to ds2. The ar-

gument to get (2.12) of [5] is valid on minimal surfaces in XN(c) except at

isotropic points. Hence we have by (2.12) of [5] under our notation,

(12) Alog{(c-*)2-*„} = 8*

on M2. By (11) and (12),

A* = 6*2 - 6c* - 2Kn - 2cK„/(K - c) =: R(K)

and

|V*|2 - 2K3 - 4cK2 + 2(c2 - Kn)K =: S(K)

on M2 , where V is the Riemannian connection of M with respect to ds2. If

* is not constant on M2, then

(13) SK + (R - S')(R - ±S') + S(R' - %S") - 0

on M2, where the prime denotes the differentiation with respect to * (see

[3, p. 164; 9, p. 136]). By the computation we find that (13) is a nontrivial
equation for *. So * must be constant on M2, which is a contradiction.
Hence * is a constant less than c on M2, and by continuity, on M. From
the hypothesis that the metric ds2 = \/c- K ds2 is flat at points where K < c,

we have c> 0 and * = 0 on M.
Therefore, either (i) M lies in a totally geodesic X3(c) or (ii) c > 0 and

M is flat.
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