MINIMAL SURFACES WITH THE RICCI CONDITION IN 4-DIMENSIONAL SPACE FORMS

MAKOTO SAKAKI

(Communicated by Peter Li)

Dedicated to Professor Y. Hatakeyama on his 60th birthday

ABSTRACT. Let $X^N(c)$ denote the N-dimensional simply connected space form of constant curvature c. We consider a problem to classify those minimal surfaces in $X^N(c)$ which are locally isometric to minimal surfaces in $X^3(c)$. In this paper we solve this problem in the case where N=4, and give a result also in higher codimensional cases.

0. Introduction

Let $X^{N}(c)$ denote the N-dimensional simply connected space form of constant curvature c, and let M be a minimal surface in $X^N(c)$ with Gaussian curvature $K (\leq c)$ with respect to the induced metric ds^2 . When N=3, M satisfies the Ricci condition with respect to c, that is, the metric $d\hat{s}^2 = \sqrt{c - K} ds^2$ is flat at points where K < c. Conversely, every 2-dimensional Riemannian manifold with Gaussian curvature less than c which satisfies the Ricci condition with respect to c, can be realized locally as a minimal surface in $X^3(c)$ (see [10]). Then it is an interesting problem to classify those minimal surfaces in $X^{N}(c)$ which satisfy the Ricci condition with respect to c, that is, to classify those minimal surfaces in $X^{N}(c)$ which are locally isometric to minimal surfaces in $X^3(c)$, or to compare locally the Riemannian structures of minimal surfaces in $X^N(c)$ with those of minimal surfaces in $X^3(c)$. In the case where c=0, Lawson [11] solved this problem completely (cf. Chapter IV of [12]). In [13], with some global assumptions, Naka (= Miyaoka) obtained some results in the case where c > 0. In [14] we discussed exceptional minimal surfaces in $X^{N}(c)$ which satisfy the Ricci condition with respect to c.

The main purpose of this paper is to solve the above problem in the case where N=4.

Theorem 1. Let M be a minimal surface in $X^4(c)$ with Gaussian curvature K with respect to the induced metric ds^2 . Suppose that the metric $d\hat{s}^2 = \sqrt{c - K} ds^2$ is flat at points where K < c. Then M lies in a totally geodesic $X^3(c)$.

Received by the editors October 1, 1992.

1991 Mathematics Subject Classification. Primary 53A10.

Remark 1. (i) When c = 0, Theorem 1 is included in [11].

(ii) For c > 0, there are flat minimal surfaces in $X^5(c)$ not lying in any totally geodesic $X^4(c)$, which automatically satisfy the Ricci condition with respect to c (see [2, 8]). So, in the case where c > 0, Theorem 1 is not true if we replace $X^4(c)$ by $X^5(c)$.

We cannot apply the method used to prove Theorem 1 to higher codimensional cases directly. However in §3, with an additional assumption, we will give a result in higher codimensional cases.

1. Preliminaries

Let M be a 2-dimensional Riemannian manifold isometrically immersed in $X^N(c)$ with Gaussian curvature K with respect to the induced metric. Let A be the second fundamental form of M. We denote by T_pM and $T_p^\perp M$ the tangent space and the normal space of M at p, respectively. A point p on M is called isotropic if the ellipse of curvature $\{A(X,X) \in T_p^\perp M; X \in T_pM, |X|=1\}$ at p is a circle. We say that M is isotropic if each point on M is isotropic.

At each point p on M, we choose orthonormal bases $\{e_1, e_2\}$ and $\{e_3, \ldots, e_N\}$ for T_pM and $T_p^{\perp}M$, respectively. We shall make use of the following convention on the ranges of indices: $1 \le i, j, k \le 2, 3 \le \alpha, \beta \le N$. Let h_{ij}^{α} be the components of A. We denote by $R_{\beta ij}^{\alpha}$ the components of the normal curvature tensor of M. Then

$$R^{\alpha}_{\beta ij} = \sum_{k} (h^{\alpha}_{ik} h^{\beta}_{jk} - h^{\alpha}_{jk} h^{\beta}_{ik}).$$

Following [5], we define the normal scalar curvature K_n of M by

$$K_n = \sum_{i < j, \alpha < \beta} (R^{\alpha}_{\beta ij})^2 = \frac{1}{4} \sum_{i, j, \alpha, \beta} (R^{\alpha}_{\beta ij})^2.$$

When N=4, we define the normal curvature K_{ν} of M by $K_{\nu}=R_{412}^3$, which changes sign according to the orientation of the bases.

Assume further that M is a minimal surface. Then we may choose the bases $\{e_i\}$ and $\{e_{\alpha}\}$ so that the components h_{ij}^{α} satisfy

$$(h_{ij}^3) = \begin{pmatrix} \lambda & 0 \\ 0 & -\lambda \end{pmatrix}, \quad (h_{ij}^4) = \begin{pmatrix} 0 & \mu \\ \mu & 0 \end{pmatrix}, \quad (h_{ij}^\alpha) = (0) \quad \text{for } \alpha \geq 5,$$

for some λ and μ . It is easy to see that $(c-K)^2-K_n\geq 0$, and the point p is isotropic if and only if $|\lambda|=|\mu|$, which is equivalent to that $(c-K)^2-K_n=0$. Similarly, when N=4, $c-K\geq |K_\nu|$, and p is isotropic if and only if $c-K=|K_\nu|$.

2. Proof of Theorem 1

Proof of Theorem 1. Assume that M lies fully in $X^4(c)$, namely, does not lie in a totally geodesic $X^3(c)$. Then K < c and $K_{\nu} \neq 0$ open densely, where K_{ν} denotes the normal curvature of M (see Lemma 2 of [7]). As the metric $d\hat{s}^2 = \sqrt{c - K} ds^2$ is flat at points where K < c, we have

$$\frac{K}{\sqrt{c-K}} - \frac{1}{2\sqrt{c-K}}\Delta\log\sqrt{c-K} = 0,$$

or equivalently,

$$\Delta \log(c - K) = 4K$$

at points where K < c, where Δ denotes the Laplacian of M with respect to ds^2 .

If M is isotropic, then noting that an isotropic minimal surface lying fully in $X^4(c)$ is exceptional in the sense of [6], we have by Theorem A of [6],

$$\Delta \log(c - K) = 6K - 2c$$

at points where K < c. From (1) and (2) we have a contradiction. So M is not isotropic.

Set

$$M_1 = \{ p \in M : K < c, K_\nu \neq 0, p \text{ is not isotropic} \},$$

which is an open dense subset of M. By Theorem 1 of [4],

(3)
$$\Delta \log(c - K + K_{\nu}) = 2(2K - K_{\nu})$$

and

(4)
$$\Delta \log(c - K - K_{\nu}) = 2(2K + K_{\nu})$$

on M_1 . Set $F = K_{\nu}/(c - K)$. Then by (1), (3), and (4),

(5)
$$\Delta F = -2(c - K)F(1 + F^2)$$

and

(6)
$$|\nabla F|^2 = 2(c - K)F^2(1 - F^2)$$

on M_1 , where ∇ is the Riemannian connection of M with respect to ds^2 . We denote by \tilde{K} , $\tilde{\nabla}$, and $\tilde{\Delta}$ the Gaussian curvature, the Riemannian connection, and the Laplacian of M_1 with respect to the metric $d\tilde{s}^2 = (c - K) ds^2$, respectively. We note that the metric $d\tilde{s}^2$ is nondegenerate on M_1 . Then

(7)
$$\tilde{K} = \frac{K}{c - K} - \frac{1}{2(c - K)} \Delta \log(c - K) = \frac{K}{K - c}$$

on M_1 , where we use (1) for the second equality. Equations (5) and (6) are rewritten as follows:

(8)
$$\tilde{\Delta}F = -2F(1+F^2) =: P(F)$$

and

(9)
$$|\tilde{\nabla}F|^2 = 2F^2(1 - F^2) =: Q(F)$$

on M_1 . As 0 < |F| < 1 on M_1 , F is not constant on M_1 by (9). Hence we have

(10)
$$Q\tilde{K} + (P - Q')(P - \frac{1}{2}Q') + Q(P' - \frac{1}{2}Q'') = 0$$

on M_1 , where the prime denotes the differentiation with respect to F (see [3, p. 164; 9, p. 136]). Noting that 0 < |F| < 1 on M_1 , we have by (7)-(10), K = 8c/9 on M_1 and, by continuity, on M. As K < c on M_1 , we find that c > 0. Now we have a contradiction because there are no minimal surfaces with constant curvature 8c/9 in $X^4(c)$, where c > 0 (see [2, 9]).

Therefore, M lies in a totally geodesic $X^3(c)$.

3. HIGHER CODIMENSIONAL CASES

In this section we prove the following.

Theorem 2. Let M be a minimal surface in $X^N(c)$ with Gaussian curvature K with respect to the induced metric ds^2 . Suppose that the metric $d\hat{s}^2 = \sqrt{c - K} ds^2$ is flat at points where K < c and the normal scalar curvature of M is constant. Then either (i) M lies in a totally geodesic $X^3(c)$, or (ii) c > 0 and M is flat.

Remark 2. (i) A minimal surface M in $X^N(c)$ lies in a totally geodesic $X^3(c)$ if and only if the normal scalar curvature of M is identically zero (see Lemma 2 of [7]).

- (ii) Flat minimal surfaces in $X^N(c)$ where c > 0 are classified (see [2]). By Theorem 3.1(2) of [2] and Proposition 1(iii) of [8], we find that all of them have constant normal scalar curvature.
- (iii) Minimal surfaces with constant normal scalar curvature in space forms are studied in [1] and [5].

Proof of Theorem 2. Assume that M does not lie in a totally geodesic $X^3(c)$. Then K < c open densely and the normal scalar curvature K_n of M is a positive constant (see Remark 2(i)).

When M is isotropic, we have $(c-K)^2 - K_n = 0$ on M, and K is a constant less than c. From the hypothesis that the metric $d\hat{s}^2 = \sqrt{c - K} ds^2$ is flat at points where K < c, we have c > 0 and K = 0 on M.

When M is not isotropic, set $M_2 = \{p \in M; K < c, p \text{ is not isotropic}\}$, which is an open dense subset of M. As the metric $d\hat{s}^2 = \sqrt{c - K} ds^2$ is flat at points where K < c, we have

$$\Delta \log(c - K) = 4K$$

on M_2 , where Δ denotes the Laplacian of M with respect to ds^2 . The argument to get (2.12) of [5] is valid on minimal surfaces in $X^N(c)$ except at isotropic points. Hence we have by (2.12) of [5] under our notation,

(12)
$$\Delta \log\{(c-K)^2 - K_n\} = 8K$$

on M_2 . By (11) and (12),

$$\Delta K = 6K^2 - 6cK - 2K_n - 2cK_n/(K - c) =: R(K)$$

and

$$|\nabla K|^2 = 2K^3 - 4cK^2 + 2(c^2 - K_n)K =: S(K)$$

on M_2 , where ∇ is the Riemannian connection of M with respect to ds^2 . If K is not constant on M_2 , then

(13)
$$SK + (R - S')(R - \frac{1}{2}S') + S(R' - \frac{1}{2}S'') = 0$$

on M_2 , where the prime denotes the differentiation with respect to K (see [3, p. 164; 9, p. 136]). By the computation we find that (13) is a nontrivial equation for K. So K must be constant on M_2 , which is a contradiction. Hence K is a constant less than c on M_2 , and by continuity, on M. From the hypothesis that the metric $d\hat{s}^2 = \sqrt{c - K} ds^2$ is flat at points where K < c, we have c > 0 and K = 0 on M.

Therefore, either (i) M lies in a totally geodesic $X^3(c)$ or (ii) c > 0 and M is flat.

REFERENCES

- 1 A. C. Asperti, Minimal surfaces with constant normal curvature, J. Math. Soc. Japan 36 (1984), 375-386.
- R. Bryant, Minimal surfaces of constant curvature in Sⁿ, Trans. Amer. Math. Soc. 290 (1985), 259-271.
- L. P. Eisenhart, An introduction to differential geometry, Princeton Univ. Press, Princeton, NJ, 1947.
- 4. I. V. Guadalupe and R. A. Tribuzy, Minimal immersions of surfaces into 4-dimensional space forms, Rend. Sem. Mat. Univ. Padova 73 (1985), 1-13.
- 5. T. Itoh, Minimal surfaces in a Riemannian manifold of constant curvature, Kodai Math. Sem. Rep. 25 (1973), 202-214.
- 6. G. D. Johnson, An intrinsic characterization of a class of minimal surfaces in constant curvature manifolds, Pacific J. Math. 149 (1991), 113-125.
- 7. K. Kenmotsu, On compact minimal surfaces with non-negative Gaussian curvature in a space of constant curvature. I, Tohoku Math. J. 25 (1973), 469-479.
- 8. ____, On minimal immersions of R^2 into S^N , J. Math. Soc. Japan 28 (1976), 182-191.
- 9. ____, Minimal surfaces with constant curvature in 4-dimensional space forms, Proc. Amer. Math. Soc. 89 (1983), 133-138.
- 10. H. B. Lawson, Complete minimal surfaces in S³, Ann. of Math. (2) 92 (1970), 335-374.
- 11. ____, Some intrinsic characterizations of minimal surfaces, J. Analyse Math. 24 (1971), 151-161.
- 12. ____, Lectures on minimal submanifolds, Publish or Perish, Berkeley, 1980.
- 13. R. Naka, Some results on minimal surfaces with the Ricci condition, Minimal Submanifolds and Geodesics (M. Obata, ed.), Kaigai, Tokyo, 1978, pp. 121-142.
- 14. M. Sakaki, Exceptional minimal surfaces with the Ricci condition, Tsukuba J. Math. 16 (1992), 161-167.

Department of Mathematics, Faculty of Science, Hirosaki University, Hirosaki 036, Japan