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ON INDUCED CHARACTERS

YAKOV BERKOVICH

(Communicated by Ronald M. Solomon)

Abstract. Suppose that H is a normal subgroup of a finite group G, <p 6

lrr{H), and Irr(#>G) is the set of all irreducible constituents of the induced

character ipG . If |Irr(pG)| > \G : H\/4 then G/H is solvable.

If t is a character of a group, then by Irr(r) we denote the set of all irre-

ducible constituents of t. Set s(t) = | Iit(t)| and w(x) = J2(r > X) > where

X runs over the set Irr(C7) of all irreducible characters of G. Obviously

s(r) < w(x).

In this note we prove the following

Theorem. Suppose that H is a proper normal subgroup of a finite group G, p

is the smallest prime dividing \G : H\, and tp is an irreducible character of H.

(a) If s(tpG) > \G : H\/p2 then G/H is solvable unless tp is G-invariant,
<PG = P(Xl + ■■■ + Xs) > where \rr(tpG) = {xx,---,Xs}> s(<pG) =

\G:H\/p2.
(b) If w(tpG) > \G : H\/p then G/H is solvable unless the same exception

holds as in (a).

We consider only finite groups.

A group G is said to be p-nilpotent ( p is always a prime) if it has a normal
p-complement. A group G is said to be dispersive if its arbitrary subgroup A
is p-nilpotent for the smallest prime p dividing \A\.

We fix the following notation. Let Irr(G) = {xx, ... , Xk} > where k = k(G)

is the class number of G. The number mc(G) = k(G)/\G\ is called the measure
of commutativity of G. Obviously 0 < mc(G) < 1 and mc(G) = 1 iff G is
abelian. Denote by T(G) the sum of degrees of all irreducible characters of G

and set f(G) = r(C7)/|C7|. Note that G is abelian iff f(G) = 1.

Lemma 1 [7]. Let H be a subgroup of a group G. Then :

(a) mc(H) > mc(G).

(b) f(H)>f(G).
(c) // H is normal in G then mc(G/H) > mc(G).

(d) mc(G) > f(G)2 ; mc(G) = f(G)2 iff G is abelian.
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Proof, (a) By reciprocity

k(G) = \hr(G)\<    £    \\rr(y/G)\<\G:H\\\rr(H)\ = \G:H\k(H)
W€\n{H)

and

mc(G) = k(G)/\G\ < k(H)/\H\ = mc(H).

(b) By reciprocity

T(G)=   £   X(l)<    ¿2    WG(l) = \G:H\    £    y,(l) = \G : H\T(H)
X€lrr(G) ^elrr(/7) y€lrr{H)

and

f(G) = T(G)/\G\ < T(H)/\H\ = f(H).

(c) Let kG(M) denote the number of G-classes (= classes of conjugate el-

ements of G ) having nonempty intersections with the subset M of G. For

x £ G denote by K(x) the G-class containing x. Obviously kG(K(x)H) =
kG(xH) < \H\. Obviously there exists a subset 971 ç G such that

G= £*(*)//
xe<m

is a partition. Since |9Jt| = k(G/H) then

k(G) = £ kG(K(x)H) < \m\\H\ = k(G/H)\H\

so that

mc(G) = k(G)/\G\ < k(G/H)\H\/\G\ = mc(G/H).

(d) (Mann) Consider two rc-dimensional vectors (k = k(G))

a=(xx(l),...,xk(l)),       b = (l,...,l).

Then by the Cauchy-Schwartz inequality

(|C7|/(C7))2 = T(G)2 = (a-b)2 < ||a||||b|| = \G\k(G) = \G\2mc(G)

and our inequality follows. If /(G)2 = mc(C7) then vectors a and b are linearly

dependent. In this case /'(I) = • • • = Xk(l) = I and G is abelian.       D

We note that Lemma 1(c) is a consequence of the inequality

k(G) < k(G/H)k(H)

which is due to Gallagher. For the other proof of Lemma 1 (d) see [7].

Lemma 2. Suppose that G = RG' is a Frobenius group with the kernel G' and
a complementary factor R, \R\ = q is a prime, G', the commutator subgroup

of G, is an elementary abelian group of order pb, and p is a prime.

(a) If r = min{p, q} then mc(G) < (r + l)/r2.
(b) If p < q then mc(G) < l/p2 unless G = Ai,, the alternating group of

degree 4.
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Proof. One has
mc(G) = q-2p-b(pb-l+q2).

(a) Suppose that mc(C7) > (r + l)/r2 .
(la) Let p < q. Then b > 1 and

pb-l+q2> q2pb-2(p +l) = q2pb~x + q2pb~2

which is impossible.
(2a) Let q < p . Then

pb - 1 + q2 > (q + l)pb = qpb + pb ,

q2-l>qpb>q(q+l) = q2 + q,

a contradiction, and (a) is proved.

(b) Suppose that mc(G) > l/p2 . Then

pb -l+q2> q2pb~2.

If b = 2 then p = 2, q = 3, and G êé A4 .Let b>2. Then

(pb-l)/(pb-2-l)>q2>(p + l)2,

pb-l> (pb~2 -l)(p+l)2= pb'2(p +l)2-(p+ I)2

= pb + 2pb-x+pb-2-(p + l)2,

(p + l)2>2pb-x+pb-2+l >2p2+p+l,

a contradiction.   D

Lemma 3. Suppose that p is the smallest prime divisor of the order of a group

G.

(a) // mc(G) > (p + l)/p2 then G is abelian.
(b) If mc(<j) > l/p2 then G is solvable, and G is dispersive if p > 2.
(c) // f(G) > l/p then G is dispersive unless \G'\ £ {22, 23}.

Proof, (a) Suppose that G is a counterexample of minimal order. Then (Lem-

ma 1(a), (c)) G is a minimal nonabelian group. By the Miller-Moreno Theorem

[6] one of the following assertions holds:

(i) \G\=p", \G'\=p, \G:Z(G)\=p2.
(ii) G = QG', a semidirect product of Q,G' £ Syl(G), G is elementary

abelian.

If (i) holds one obtains

mc(G) =p-"k(G) =p-"(p"-2+p"-x -p"-*)

= p-2(p+l)-p-i<p-2(p+l),

a contradiction.
If (ii) holds one obtains mc(G) < mc(G/Z(G)), and a contradiction follows

from Lemma 2(a).
(b) At first we prove that G is solvable. Suppose that G is a counterexample

of minimal order. Then all proper subgroups and epimorphic images of G are

solvable, but G is nonsolvable (Lemma 1(a), (c)). So G is a nonabelian simple
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group. Suppose that *'(!) < •• < Xk(l)- Then x'{l) > p for i > 1 and
Xk(l)>P + l [5, Theorem 6.9]. Hence

fc-i

|G| = l + 5]^(l)2 + /(l)2>l + ^-2)p2 + (p+l)2
i=2

= (k - l)p2 + 2p + 2 > (\G\/p2 -l)p2 + 2p + 2

= \G\ + 2p + 2-p2.

Hence if p = 2 then we have \G\ > \G\+2, a contradiction. Suppose that p > 2
and prove that G is dispersive. In view of Lemma 1 (a) it is sufficient to prove

that G is /7-nilpotent. Suppose that G is a counterexample of minimal order.

Then G is a minimal nonnilpotent group with a normal Sylow /»-subgroup [4,

Satz 4.5.4]. Then (Lemmas 1(c) and 2(b)) one has

mc(G) < mc(G/Z(G)) < l/p2,

a contradiction.

(c) is proved in [7].   G

Proof of the Theorem, (a) At first suppose that H = 1. Without loss of gen-

erality we may assume that tp = lH. Then tpG = pG, the regular character

of G, lrr(tpG) = Irr(G) = {/',..., xk} > where k = k(G), the class number

of G. In our case s(tpG) = k(G). Therefore by the condition k(G) > \G\/p2 ,

mc(G) > l/p2, and G is solvable (Lemma 3(b)).
Suppose that H > 1. Let

Irr^0)^1,...,;^}     and    <pG = exxx + ■■■+ esxs.

If
Xh = e¡(tpx + ■ ■ ■ + tpt)

is the Clifford decomposition, <px = tp,  t = \G : IG(q>)\, where IG(tp) is the
inertia group of tp in G,then x'(l) = e¡ttp(l) for all i and

\G:H\tp(l) = cpG(l) = tcp(l)(e2 + --- + e2),

\IG(tp):H\ = e2 + --- + e2.

Since 5 = s(tpG) > \G : H\/p2 , we have

(*) \G : H\ = t(e\ + ■ ■ ■ + e2) > ts > t\G : H\/p2 ;

then t < p2 . Since t is a divisor of \G : H\ then t £ {1, p2, q}, where q is
a prime (we recall that p is the smallest prime divisor of \G : H\ ).

(i) Suppose that t = p2. Then ex = ■■■ = es = I by (*). By [5, Theorem
6.11] we have

Irr(/^) = {^,,...,^},

(**) <plo{9) = ex y/x + ■ ■ ■ + es y/s = y/x + ■ ■ ■ + y/s.

Then by reciprocity (W\)h = 9 and (by Gallagher's Theorem [5, Corollary

6.17]) | Irr(IG(tp)/H)\ = s, lrr(IG(tp)/H) = {ßx, ... , ßs} , ß((l) = e¡, and then
x¡ii — y/xßj (after possible reordering) for i = I, ... , s. Now

mc(IG(tp)/H) = s\IG(tp)/H\-x > (\G : H\/p2)(\G : H\/t)~x = t/p2 = 1,
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and IG(tp)/H is abelian. Then G/H is solvable as a product of IG(tp)/H and

the Sylow /^-subgroup of G/H (see, for example, [4, Satz 6.4.11]).

(ii) Suppose that t is a prime. Then IG(cp)/H is maximal in G/H. By [5,
Theorem 6.11] the equalities (**) are true.

Suppose that all e¡ > 1. Then all e¡ > p since ex,..., es as degrees of

irreducible projective representations of IG(<p)/H are divisors of \IG(<p)/H\.
Hence

\IG(tp)/H\ = e2 + --- + e2s>p2s> p2(\G : H\/p2)

= \G:H\ = t\IG(tp)/H\>\IG(tp)/H\,

a contradiction. Supposing ex < ••• < es, we have ex = 1. The (i//x)h — <P

and, as in (i), using [5, Corollary 6.17], we obtain mc(IG(<p)/H) > t/p2 . Then
IG(tp)/H is solvable by Lemma 3(b).

If t = p then IG(tp)/H is normal in G/H, and G/IG(tp) is cyclic of order
p . Therefore G/H is solvable in this case.

Suppose that t > p . Then

mc(IG(tp)/H)>(p+l)/p2

and IG(tp)/H is abelian by Lemma 3(a), so that G/H is solvable by Herstein's
Theorem [3].

(iii) Suppose that t = 1. Then tp is G-invariant. If e¡ = 1 for some

i G {1,..., s} then as above G/H is solvable. Suppose that all e¡> I. Then
all e¡ > p and

\G:H\=e2 + ... + e¡>sp2>(\G:H\/p2)p2 = \G:H\.

Hence s = \G : H\/p2 , ex = ■■• = es= p, and assertion (a) is proved.
(b) Suppose that H = 1. Without loss of generality we may assume that

tp = lH. Then tpG = pG, the regular character of G, and \G\/p < w(tpG) =
T(G) = \G\f(G) and G is solvable by Lemma 3(c).

Let H > 1. Let as before

\rr(<pG) = {x1,--- ,XS},        <PG = exxl +■■■ + esxs.

Then

w(tpG) = ex+--- + es>\G:H\/p.

As before one has

\G:H\ = t(e2 + --- + e2),        t = \G : IG(tp)\.

Therefore

\IG(tp) :H\ = e\ + --- + e2>ex+--- + es

= w(tpG) > \G : H\/p = t\IG(tp) : H\/p ^t<p.

So IG(g>) is normal in G and G/IG(tp) is cyclic.
Suppose that e¡ = 1 for some i € {1,..., s}. Then as in (a) one has

\IG(<p)/H\f(IG(tp)/H) = T(IG(tp)/H) = ex+--- + es = w(tpG) > \G : H\/p

= t\IG(tp)/H)\/p^f(IG(tp)/H)>l/p

and IG(tp)/H is solvable (Lemma 3(c)). Since G/IG(tp) is cyclic then G/H is
solvable.



684 YAKOV BERKOVICH

Suppose that all e, > 1. Then e¡ > p for all i. Therefore

\IG(tp) :H\=e2x+--- + e2s> p(ex + ■ ■ • + es) = pw(tpG) > p(\G : H\/p)

= \G:H\^IG(tp) = G,       ex=-=es=p.   D

Remark. If, in the Theorem, tp is reducible then G/H is solvable unless for

any X £ Irr(ç>) one has XG = p(xx +-1- Xs), s = \G : H\/p2 , and Irr(AG) =
{xl,-.-,xs}-

Corollary. Suppose that H is a proper normal subgroup of a group G, and p

is the smallest prime dividing \G : H\.

(a) // w(tpG) > \G : H\/p for all nonlinear tp £ lrr(H), then G/H is
solvable or H' has a normal p-complement.

(b) If s(tpG) > \G : H\/p2 for all nonlinear tp £ lrr(H), then the same
conclusion as in (a) holds.

Proof. Suppose that G/H is nonsolvable. We may assume that H is non-
abelian (so that lrr(H) contains a nonlinear character). Then for any nonlinear

tp £ lrr(H) we have (by the Theorem)

<PG=P(X1 + --- + XS),        lrr(tpG) = {xx,...,Xs}.

By reciprocity p divides degrees of all irreducible constituents of tpG . Let

Irr(G, p') = {x e Irr(G)|/(l) > 1 and p does not divide *(1)}

and let G(p') be the intersection of kernels of all characters belonging to

Irr(G, p'). The subgroup G(p') is p-nilpotent [2]. Take x 6 Irr(G, p'). Then
by the above all irreducible constituents of Xh are linear so that H' < ker^ .

Therefore H' < G(p') and H' is p-nilpotent.     D

Remarks. 1. We note the crucial role of Gallagher's Theorem [5, Corollary 6.17]

in the proof of the Theorem. Note that the assertion converse to Gallagher's

Theorem is also true. Namely, if N is a normal subgroup of G and x <= Irr(G)
then x® 6 Irr(G) for all 6 £ lrr(G/N) implies Xn e Irr(A^). We prove this
assertion. Take X £ Itt(xn) ■ It is sufficient to prove that A(l) = ^(1) • Take

ip £ lrr(G/N). Then

{VX ,¿G> - ((¥X)n ,A> = V(1)(XN , A)

so that y/(l)y/x is a constituent of XG . Now

(Xn)G = (Xn-In)G = XPg/n,

where pG/N is the regular character of G/N. Put lrr(G/N) = {0X, ... , 6„} .

Then
n

XPG/N = z2e^eiX
i=l

by the above is a constituent of Xa . Since

(XPg,n)(1) = \G : N\x(l) > \G : N\X(l) = XG(l)

then xPg/n = ¿G, ¿(l) = X(l), and X = Xn • Therefore xn e ^(A^) and our
assertion is proved.
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2. If, in the Theorem,

s(<pG)>(p + l)\G:H\/p2

then G/H is abelian. In particular if s(tpG) = \G : H\ then G/H is abelian.
3. Suppose that H < G, tp £ lrr(H), and x e Irr(G). Then

w(tpG) > \G : H\/2 => min{(ç>G, t)|t e lrr(tpG)} = 1,

«(**) > \G : H\/2 => minitel, ^ e Irr(^)} = 1.

Analogous results hold for s(tpG) and s(xh) ■

4. Let H < G. If 5(í9g) = IG : H\ (or u;(ç>G) = \G : H\ ) for all nonprincipal
tp £ lrr(H) then H is normal in G. We prove the first part of this assertion. If

tp £ lrr(H) and s(tpG) = \G : H\ then degrees of all irreducible constituents of

tpG are equal to tp(l). Take x £ Irr((l#)G) and suppose that |Irr(;rj/)| > 1.

Take X £ Irr(/ff)-{lÄ} . Since s(XG) = \G : H\ then by the above X(l) = x(l),
a contradiction since X £ lrr(xH -Ih) • So all irreducible constituents of (Ih)g

are linear and H is normal in G.

5. If mc(G) > 1/12 then G is solvable [1]. So (Lemma 1(d)) if /(G)2 >
1/12 then G is solvable.

Conjectures.   Suppose that H < G.

1. If s(tpG) > \G : H\/4 for all tp £ lrr(H) and \G : H\ is sufficiently large,
then H is normal in G.

2. If w(tpG) > \G : H\/2 for all tp £ lrr(H) and \G : H\ is sufficiently large,
then H is normal in G.
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