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ON A CLASS OF LIPSCHITZ CONTINUOUS FUNCTIONS
OF SEVERAL VARIABLES

TRAN DUC VAN AND NGUYEN DUY THAI SON

(Communicated by Andrew Bruckner)

Abstract. We establish an estimate via initial values for functions in a class of

Lipschitz continuous functions of several variables. This estimate can be used

to investigate the uniqueness of quasi-classical solutions of Cauchy problems

for first-order nonlinear partial differential equations (PDEs). Particularly, we

give an answer to an open problem posed by S. N. Kruzkov.

Let T be a positive number, Qr = (0, T) x W = {it, x) \ 0 < t < T},

Vx = (d/dxx, d/dx2, ... , d/dxn), « > 1, and || • || and (•, •) be the norm
and the scalar product in R" , respectively.

Denote by Lip(Qj-) the set of all locally Lipschitz continuous functions u
defined on YlT ■ Further, set Lip([0, T) x R") = Lip(Qr) n C([0, T) x R»).
For every function u defined on Q7-, we put

Dif(w) = {(t, x) e YiT I u is differentiable at (t, x)}.

In this note we shall be concerned with the following class of Lipschitz con-
tinuous functions:

K(ßr) = {ue Lip([0, T) x R») \3Gc[0,T], mes(G) = 0,

Dif(«)Dfír\(GxR")}.

In other words, a function u e Lip([0, T) x R") belongs to  Vi&T) iff, for

almost all t, u is differentiable at any point (t,x).
It is obvious that

Lip([0 ,T)xR")d K(pQt-) D Cx(Qr) n C([0 ,T)xM").

Our aim is to prove the following result.

Theorem 1. Let u be a function in V(£lT). If there exist a nonnegative function

h locally bounded on R" and a nonnegative function keLx(0, T) suchthat

(1)
du(t, x)

dt
< kit) • [(1 + \\x\\)\\Vxuit, x)\\+hix)\uit, x)\],
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for almost every t e (0, T) and for ail x e R" , then

(2)      \u(t, x)\ < exp C(jc) I kix)dr  - sup |«(0,y)|:
Jo J    l|v||<(||x|| + l)exp/o'fc(T)rft-l

where

(3) C(x) = sup j|ftCv)| | ||y|| < (||ac|| + l)exp jírfc(T)dz- 11 .

Corollary 1. Let u e F(Qr) a«<i m(0, x) = 0, x e R". If condition (1) w

satisfied for almost every t e (0, T) and for ail x e R", then w(r, x) = 0 /'«

Remark 1. Corollary 1, in particular, gives the answer to problem a) posed by
S. N. Kruzkov in [4]. Theorem 1 and Corollary 1 can be used to investigate the

uniqueness of quasi-classical solutions of the Cauchy problems for first-order

nonlinear PDEs and the continuous dependence of solutions on initial condi-
tions. In [5, 6] we obtained some results similar to Theorem 1 for subclasses

of F(fíj-) and used them to prove the uniqueness of global solutions of the

Cauchy problems for nonlinear PDEs of first order.

Remark 2. We show by the following example that the Lipschitz continuity of

u is essential in Theorem 1.
Let / c [0, 1] be the Cantor set, i.e., the set of all numbers of the form

POO

(c) < = ££>
¿=iJ

where e. is either 0 or 2. The set J is complete, nowhere dense on I1, and

mes(/) = 0.
We define the function u(-), which is called the Cantor ladder, in the fol-

lowing way (see [3]). For t e J given by (C), we put

»«) = £§>      bt=ej.

If (a, ß) is an open maximum interval in (0, 1)\J, then a, ß e J, v(ß) =

v(a). We set for t e (a, ß): v(t) = const = via) = viß). It follows that

v(-) e C[0, 1] and that dv/dtit) = 0 almost everywhere in (0, 1). In fact,

dv/dt{t) = 0 for r e(0, 1)\/.
Putting u(t, x) = v(t), (t, x) e Ylx, we easily see that

ueCl(((0, l)\/)xR")nC([0, l]xR"),        u(0,x) = 0,

du(t,x)/dt = 0,    M(t,x)e((0, l)\/)xR'.

The function u satisfies all the conditions of Theorem 1 and Corollary 1 except
Lipschitz continuity. This explains why u(t, x) ^ 0.

Proof of Theorem 1. For an arbitrary point (to, xn) £ Qr, we have to prove
that

(2.a)   \u(t0, x0)| <exp C(x0) [°k(t)dt
Jo

sup l"(0,y)|,
|<(||xo||-rl)exp/o'0fc(0<//-l
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Let Br = B" = {y e R" | ||y|| < r), r>0. Denote by I/(i0, x0) the set of
all absolutely continuous functions x(-) : / = [0, to] —> R" , which satisfy almost

everywhere in / the differential inclusion dx/dt(t) e .SkwaixMll+i) subject to
the constraint x(in) = xn .

From Theorem VI-13 in [2], it follows that X/(io, xo) is a nonempty com-

pact set in C(I, R"). The sets Z(t, t0, x0) = {x(t) \ x(-) e X/(i0, *o)} and
T(io, xq) = {ÍT,y)\x e I, y e Ziz, to, xq)} are therefore compact sets in R"

and R"+1, respectively, for all tel. Moreover, by the converse of Ascoli's

theorem, the multivalued function Z(-, to, xn) : / —► R" is continuous.

We now define a function tp(-): I —> R1 as

tp(t) = max{\u(t, y)\ \yeZ(t, i0,x0)}.

Then, according to the maximum theorem (see [1, Theorem 1.4.16]), the fact

that u e C(r(in, Xo)) implies <p(-) e C(I). In addition, we have:

Lemma 1. For an arbitrary number 9 e (0, in), <?(•) is absolutely continuous

on [6, to] ■

We shall also need the following:

Lemma 2. We have for every tel the inclusion

(4) Z^' to' *°) C 5(N,||+l)exp/;°*(t)¿t-1 •

Proof of Lemma 2. For every « > 0, put

k(x)dr-

The function mn(-) is absolutely continuous, positive on / with the derivative

dmn(f)/dt = -kit) - (mn(t) + 1). To prove (4) we have only to show that

(5) ||x(í)||<m„(í),    Vie/,

for all x(.)Gl/(io,x0), Mn > 0.

Since mn(to) > ||xn|| = ll-^i'o)!! > there exists a number Ç > 0 such that

m„(0>||x(r)||, Mte(to-C,to].
Assume that (5) is false, so that there exists t' e [0, to) such that mn(t') <

\\x(t')\\. Putting tx = sup{i e [0, t0) | mnit) < ||x(r)||} < /0, we have

||jc(ii)|| = m,(fi),    mnit)>\\xit)\\,       Mte(tx,to]

and
dm„(t)/dt = -kit) • (mn(t) + 1) < -k't) • (\\x(t)\\ + 1)

<-\\dx(t)/dt\\<d\\x(t)\\/dt,

almost everywhere in (tx, t0). On the other hand,

f'° úabÁfi dt > r ^^(oii dt
Jt]      dt Jh      dt

if and only if

mr,(to) - mn(tx) = mnito) - \\x(tx)\\ > \]x(t0)\\ - ||x(ii)||.

Hence we get a contradiction. This proves Lemma 2.   D
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Proof of Lemma 1. Since u e Lip(Qr), there exists L > 0 such that

|h(í, , x1) - w(i2, x2)\ < L(|f. - t2\ + \\xx - x2||),

V(i,, xl), (t2, x2) e ([6, t0] x R") n T(i0, x0).

By the absolute continuity of the Lebesgue integral, Lemma 1 will be proved
if we can show that

(6)    \<pitx)-(pit2)\<L \h-t2\ + (\\xo\\ + l)-e\p f   k(t)dt- Í      k(t)dt

Víi, h e [6, t0].

Now let

V(t\) > (p(h)   and   <p(tx) = \u(tx,x(tx))\,

for some x(-) e X/(io • xo). Since x(i2) e Z(t2, to, xo), we have

0 < 9(h) - <pih) = \uih, xih))\ - <pih)
< \u(tx, x(i,))| - \uit2, x(<2))| < \u(tx, x(tx)) - u(t2, x(i2))|

dx
<L[|i1-i2| + ||x(i1)-x(i2)||] = L \ti-t2\ +

<L \h-h\+(      kit)-i\\xit)\\ + l)dt\.
J[h,t2] J

/ h] dt
(t)dt

Therefore, (6) follows from Lemma 2. The proof is then complete.   D

Going back to the proof of Theorem 1, we put now

fit)= fki
Jo

x)dx,        /6[0,r].

By Lemma 2 and the definition of <?(•), the inequality (2.a) will be obtained

if we show that

(7) ^)<<P(0)-exp[C(xo)-/-(r)],        We[0,i0].

For arbitrary p > 0, let

y/(t) = y/ß(t) = (tp(0) + p) ■ exp[(C(x0) + p) • (f(t) + pt)].

To get (7), we have only to prove that

(8) tp(t) < y/p(t),    ViG[0,í0]-

Let co = y/ - tp . Then (8) is equivalent to co(t) > 0, VÏ € [0, in] • Of course,

co(0) = p > 0. We shall show that co(t) > co(0), Vi e [0, i0]. Assume this is
false, so there exists i' € (0, io] such that co(t') < co(0).

It is well known that there exists Gx c (0, T), mes((7i) = 0 such that

dt
it) = kit),    Vte(0,T)\Gx

By the hypothesis of Theorem 1, there exists G2 c (0, T), mes(G2) = 0
such that Q.T\(G2 x R") c Dif(w), and (1) holds for all i e (0, T)\G2 .

The absolute continuity of co(-) on [6, to] implies

mes(co(Gn[6,to])) = 0,    V0e(O,io),       G = GxuG2.
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So

(9) mes^G n [0, i0])) = lim mes(co(G n [6, i0])) = 0.
8S\0

From (9) and co(-) e C(I), we could find a number X with

max{0, co(t')} < À < co(0)   and   X 6 co[0, t']\to(G n [0, i0]).

Let

tt = inf{te[0, t']\to(t)=X}.

It is obvious that co(t*) = X, Ue(0, t')\G, and that co(t) > X, Vi e [0, i„).
Suppose that

tp(t*) = s • u(U, x.),       s = signw(i», x*),

for some x» e Ziu , to, xo) ; i.e., there exists a function x*(-) 6 X/(io, xo) so
that x*(i») = x». Choose / e R" with

(/ , 5 • VxM(í, , X,)) = -|| Vx«(i, , X,)|| , ||/|| = 1 .

The system of differential equations

^(p) = (i + l|y(p)IIW

has a classical (i.e., continuously differentiable) solution on Rl satisfying the

condition y(f(t*)) = x*. Let x(i) = y(f(t)), t e [0, T]. Of course, x(«) is

absolutely continuous on [0, T], x(i*) = x«, and

(10) Ti{t) = Tt{t)' %{m = k{t)'(1 + Mm' '•   Vi e (0' rAGl•

The function ,x(») defined by

()_(x(t)     if0<i<i,,

*X(í)_\x*(í)   ifí»<í<í0,

belongs to Z/(i0, xo). Hence,

x(t)eZ(t,to,x0),    Vie[0,i,].

This implies

(11) s-u(t,x(t)) < |w(i,x(i))| < tp(t) = y/(t)-to(t) < y/(t)-X

for all i e [0, i»). Besides that,

(12) 5 • u(t*, x(i*)) = |«(i», x»)| = <p(tA) = »/(i») - 07(í») = t/>(r,) - X.

Since i, e (0, T)\G, we see that:

(i) « is differentiable at (/», x»),
(ii) x(-) is differentiable at r, with dx/dt(U) = k(tt) • (1 + ||x»||) • /,

(iii) y/(-) is differentiable at U with

d-^iU) = (C(xo) + p)-(k(U) + p)-yl(tA).
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So it follows from (11), (12) that

^[s • u(t, x(t))]\t=t. >-£%).

Consequently,

d

> (C(xq) + p) • (k(tt) + p) ■ y/(t,)

s • -£iU , xiu)) + (dx/dt(tt), s • Vxuiu , *(**)))
at

Hence,

-jjjit., x») + fc(r,)(l + 11**11) •(/.*• VxuiU , x,))

> (C(x0) + p) • (k(U) + p) • i\uiU , x,)| + X),

Because p > 0 and X > 0, the last inequality implies that

(13)
du,
-gjÍt*,Xt) > kiu) • [(1 + ||x»||) • ||V,m(í. , x»)|| + C(x0) • \uiu, x*)|] •

Clearly, (13) contradicts (1), which shows that there could not exist any t' e

[0, i0] with coif) < coiO). So

coit) > cu(0) > 0   for all t e [0, t0] ;

therefore, (8) is proved. This completes the proof of Theorem 1.   D
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