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SEN'S THEOREM ON ITERATION OF POWER SERIES
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(Communicated by Lance W. Small)

Abstract. In the group of continuous automorphisms of the field of Laurent

series in one variable over a field of characteristic p > 0 , Sen's Theorem de-

scribes the rapidity of convergence to the identity of the sequence formed by

taking successive pth powers of a given element. This paper gives a short proof

of Sen's Theorem, utilizing the methods of p-adic analysis in characteristic

zero.

The theorem in question appears in Sen's thesis [Sen], and is concerned with

the group .%_ i (k) of formal power series in one variable with no constant term,

and first degree coefficient equal to 1, over a field k of characteristic p > 0,

where the group law is composition of series. If we call the variable t, this

group is a closed subset of the discrete valuation ring K[[t]], namely, the set of

all u(t) for which u = t (mod?2). For the (Z)-adic filtration of group %,x,

the successive quotients are isomorphic to the additive group k . Thus if we

call u°" the «-fold iteration of u with itself, any time that u = t (mod/"),

we necessarily have u°p = t (modz"+1). Sen's Theorem says much more and

is best stated in terms of the additive valuation v of K[[t]] normalized so

that v(t) = 1. According to the theorem, if u°p" is not the identity, then

v(u°p"(t)-t) = v(uop"\t)-t) (rnodp"). Let us abbreviate notation by setting

iu(n) = i(n) := v(u°p"(t) - t). Sen's Theorem now says that if u°p" is not the

identity, then i(n) = i(n - 1)   (mod/?").

As examples of this phenomenon, we have, in characteristic 2, if u(t) =

t + t4, then iu(n) = 22"+l ; if u(t) = t + t4 + /5, then iu(n) = 2n+2 ; and if u(t) =

t + t3, then iu(n) = 1 + 2"+1 . It is easy to see why the first two of these facts

hold, since each of t + t4 and t + Z4 +15 is an endomorphism of a formal group,

and since in a formal-group endomorphism ring, the multiplication comes from

substitution of power series. The first-mentioned series is an endomorphism of

the additive formal group sf(x,y) = x + y, whose endomorphism ring has

characteristic 2, and in that ring t + tA is g = 1 + tj>, <p(t) = t4 . The powers

g2' are

(l+4>2')(/) = z + z42'.
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The second-mentioned series is the endomorphism [5]^(Z) of the multiplicative

formal group JA(x, y) = x + y + xy, whose endomorphism ring is isomorphic

to the ring Z2 of 2-adic integers, and the iterates of [5](t) approach [l](t) = t

in the manner claimed because of the congruences 52" = 1 (mod2"+2), 52" ̂  1

(mod2"+3). To see why the 2-power iterates of the last-mentioned series t + Z3

approach the identity in the manner claimed is rather more difficult, and for

this the reader is referred to [K].

In this note we give a short proof of Sen's Theorem using the methods of

p-adic analysis.
Without loss of generality, we may assume that the field k is perfect. The

trick is to lift u in a particular way to a series U(x) in characteristic zero. (The
choice of a complete discrete valuation ring o of characteristic zero to serve as

constant ring for U is not crucial: the Witt ring W^k) will do.) As usual in
p-adic analysis, we pass from the original ground ring o to its integral closure

£ in an algebraic closure of the fraction field k of o . Of course, S is neither

Noetherian nor complete, but every series considered will have its coefficients
in a finite algebraic extension of k, in which the integer ring is complete and

Noetherian. Call 971 the maximal ideal of 55 . The number i(n) defined above

is now the "Weierstrass degree" of the series Uop"(t) - t, and i(n) is thus the

number of fixed points in 971 of U°p", taking account of multiplicity. The idea

is to choose the series U so that each periodic point of order dividing p" has
multiplicity at most one in every iterate of U. The existence of such a series
will make a proof of Sen's Theorem easy. The note closes with a construction

of the series U.

Theorem. Let o be a complete discrete valuation ring of characteristic zero, max-

imal ideal m, and residue field k of characteristic p > 0. Let U(t) be a series

in o[[t]] for which U(0) = 0, and suppose that n is a positive integer such that

Uop"(t)£t (modm) and all roots of U0"" (t) -1 in 971 are simple. Then for all

m with 0 < m < n, iy(m - 1) = iu(m)  (modpm).

Proof. For each m > 1 let Qm(t) be defined by

The quotient is a series in o[[t]] since for any series / e o[[t]] with f(0) = 0
we have (/(/) - t)\(for(t) - t). Put Q0(t) = U(t) - t. Our hypothesis on

multiplicities says that no two of the series Qo, Qi, ■■■ , Qn have any roots in

common. Thus the set of roots of Qm in 97t is exactly the set of points of 971

that lie in an orbit of cardinality pm under the action of U. Since, for m > 1,

the Weierstrass degree of Qm is iu(m) - iv(m - 1), the proof is done.

All the difficulty in Sen's Theorem is pushed into the construction of a lifting

of the given u(t) e K[[t]] to a series U(t) e o[[t]] of the desired form.

Proposition. Let k be a field of characteristic p > 0, and let u be a series in

K[[t]] with u(t) = t (modz2). // n is an integer such that uop"(t) ^ t, then

there is a complete discrete valuation ring (o, m) of characteristic zero, such

that o/m contains k , and a lifting U of u to o[[t]], such that all the roots of

Uop"(t)-t in 971 are simple.
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Proof. First we find any complete discrete valuation ring at all, (oo, mo), whose

residue field contains k : the Witt ring of the perfect closure of k will do. Lift

u in any way to a series Uo e oo[[t]] without constant term. Our strategy is to
choose a ring (o, m) that is the integer ring of a finite algebraic extension of the

fraction field of oo and modify Uo by adding a carefully chosen A e pNo[[t]]

so that U = Uo + A satisfies the desired conditions. We make frequent use

of the continuity of the roots of a series over o, by which we mean that if

(f(t) e o[[Ç]][[t]] and if p e m is a root of multiplicity p of of, then for all a
in a sufficiently high power of m, there are precisely p roots of af, counting

multiplicity, that correspond to p. In particular, when / is varied slightly in
a suitably small open set about of > the multiplicities of roots cannot increase.

We recall also that a fixed point C of f(t) has multiplicity greater than 1 if

and only if f'(Q = 1 and that Ç will be a multiple root of f°r(t) -1 if and only
if /'(C) is an rth root of 1. The last tool used in the proof is the observation

that if A 6 o[[?]] is a series that vanishes at all roots of UqP (x) - x and if

U = Uo + A, then every fixed point of UqP is a fixed point of U°p". We will
modify the original Uo in this way by increments that successively decrease the

multiplicity of each fixed point of U°p" to 1. Note that our modified series has

only finitely many periodic points of order dividing p" since u°p"(t) ^ t.

Now for the details: In case a fixed point Ç of U itself is a fixed point of

multiplicity greater than 1 in an iterate, we may assume (after perhaps making

a finite extension of the base) that Ç = 0, so that U°p"(t) - t takes the form

teG(t), with (7(0) ¿ 0 and e > 1. The hypothesis on U is that U'(0) = w is
a root of 1, so we set çU(t) := U(t) + ÇtG(t), which, for small enough nonzero

£, has cU'(0) t¿ w , but so close to w that it cannot be a root of 1. Therefore,
no iterate of the new series has a fixed point of multiplicity greater than 1 at 0.

A slightly more complicated situation is the one where C is a periodic point
of order pr, with 1 < r < n. Call Ç, := (70,(C), so that Ci ̂  C if 0 < i < pr.
The hypothesis on £ implies that

p'-\

u°p"(t)-t = G(t)H(t-Ciy,
;=0

where G is nonzero at all the C 's and where eo > 1 . We now set A(Z) equal

to the series G(t)(t - Q Y[j¿c(t - Ci)2 and set (U := U + ÇA. This has among
its periodic points of order dividing p" the corresponding periodic points of

U, and since the hypothesis on C implies that U°P''(Q = w , a root of 1, we

will be done when we show that we can adjust £ so that çUop''(Ç) is so close

to w that it cannot be a root of 1. We have

(u°p,'(o = n tu'bu'w)=iC/'(o n <u'&)
1=0 !=1

p'-\ p'-\

= (U'(Q + ÉA'(O) I] £/'(£■) = w + CA'(C) I] V'(h) >

and since we have constructed A so that A'(C) # 0, the proof is done.
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