SEN'S THEOREM ON ITERATION OF POWER SERIES

JONATHAN LUBIN

(Communicated by Lance W. Small)

ABSTRACT. In the group of continuous automorphisms of the field of Laurent series in one variable over a field of characteristic p>0, Sen's Theorem describes the rapidity of convergence to the identity of the sequence formed by taking successive pth powers of a given element. This paper gives a short proof of Sen's Theorem, utilizing the methods of p-adic analysis in characteristic

The theorem in question appears in Sen's thesis [Sen], and is concerned with the group $\mathcal{G}_{0,1}(\kappa)$ of formal power series in one variable with no constant term, and first degree coefficient equal to 1, over a field κ of characteristic p>0, where the group law is composition of series. If we call the variable t, this group is a closed subset of the discrete valuation ring $\kappa[[t]]$, namely, the set of all u(t) for which $u\equiv t\pmod{t^2}$. For the (t)-adic filtration of group $\mathcal{G}_{0,1}$, the successive quotients are isomorphic to the additive group κ . Thus if we call $u^{\circ n}$ the n-fold iteration of u with itself, any time that $u\equiv t\pmod{t^n}$, we necessarily have $u^{\circ p}\equiv t\pmod{t^{n+1}}$. Sen's Theorem says much more and is best stated in terms of the additive valuation v of $\kappa[[t]]$ normalized so that v(t)=1. According to the theorem, if $u^{\circ p^n}$ is not the identity, then $v(u^{\circ p^n}(t)-t)\equiv v(u^{\circ p^{n-1}}(t)-t)\pmod{p^n}$. Let us abbreviate notation by setting $v(u^{\circ p^n}(t)-t)\equiv v(u^{\circ p^n}(t)-t)$. Sen's Theorem now says that if $v^{\circ p^n}$ is not the identity, then $v(u^{\circ p^n}(t)-t)\equiv v(u^{\circ p^n}(t)-t)$. Sen's Theorem now says that if $v^{\circ p^n}$ is not the identity, then $v(u^{\circ p^n}(t)-t)$ and $v(u^{\circ p^n}(t)-t)$ is not the identity, then $v(u^{\circ p^n}(t)-t)$ is not $v(u^{\circ p^n}(t)-t)$ is not the identity, then $v(u^{\circ p^n}(t)-t)$ is not $v(u^{\circ p^n}(t)-t)$

As examples of this phenomenon, we have, in characteristic 2, if $u(t) = t + t^4$, then $i_u(n) = 2^{2^{n+1}}$; if $u(t) = t + t^4 + t^5$, then $i_u(n) = 2^{n+2}$; and if $u(t) = t + t^3$, then $i_u(n) = 1 + 2^{n+1}$. It is easy to see why the first two of these facts hold, since each of $t + t^4$ and $t + t^4 + t^5$ is an endomorphism of a formal group, and since in a formal-group endomorphism ring, the multiplication comes from substitution of power series. The first-mentioned series is an endomorphism of the additive formal group $\mathscr{A}(x, y) = x + y$, whose endomorphism ring has characteristic 2, and in that ring $t + t^4$ is $g = 1 + \phi$, $\phi(t) = t^4$. The powers g^{2^t} are

$$(1+\phi^{2^i})(t)=t+t^{4^{2^i}}.$$

Received by the editors September 29, 1992 and, in revised form, April 19, 1993. 1991 Mathematics Subject Classification. Primary 12J25; Secondary 11R37, 54H20.

The second-mentioned series is the endomorphism $[5]_{\mathscr{M}}(t)$ of the multiplicative formal group $\mathscr{M}(x,y)=x+y+xy$, whose endomorphism ring is isomorphic to the ring \mathbb{Z}_2 of 2-adic integers, and the iterates of [5](t) approach [1](t)=t in the manner claimed because of the congruences $5^{2^n}\equiv 1\pmod{2^{n+2}}$, $5^{2^n}\not\equiv 1\pmod{2^{n+2}}$. To see why the 2-power iterates of the last-mentioned series $t+t^3$ approach the identity in the manner claimed is rather more difficult, and for this the reader is referred to [K].

In this note we give a short proof of Sen's Theorem using the methods of p-adic analysis.

Without loss of generality, we may assume that the field κ is perfect. The trick is to lift u in a particular way to a series U(x) in characteristic zero. (The choice of a complete discrete valuation ring $\mathfrak o$ of characteristic zero to serve as constant ring for U is not crucial: the Witt ring $W_\infty(\kappa)$ will do.) As usual in p-adic analysis, we pass from the original ground ring $\mathfrak o$ to its integral closure $\mathfrak D$ in an algebraic closure of the fraction field k of $\mathfrak o$. Of course, $\mathfrak D$ is neither Noetherian nor complete, but every series considered will have its coefficients in a finite algebraic extension of k, in which the integer ring is complete and Noetherian. Call $\mathfrak M$ the maximal ideal of $\mathfrak D$. The number i(n) defined above is now the "Weierstrass degree" of the series $U^{\mathfrak op^n}(t) - t$, and i(n) is thus the number of fixed points in $\mathfrak M$ of $U^{\mathfrak op^n}$, taking account of multiplicity. The idea is to choose the series U so that each periodic point of order dividing p^n has multiplicity at most one in every iterate of U. The existence of such a series will make a proof of Sen's Theorem easy. The note closes with a construction of the series U.

Theorem. Let o be a complete discrete valuation ring of characteristic zero, maximal ideal m, and residue field κ of characteristic p>0. Let U(t) be a series in o[[t]] for which U(0)=0, and suppose that n is a positive integer such that $U^{\circ p^n}(t) \not\equiv t \pmod{n}$ and all roots of $U^{\circ p^n}(t) - t$ in $\mathfrak M$ are simple. Then for all m with $0 < m \le n$, $i_U(m-1) \equiv i_U(m) \pmod{p^m}$.

Proof. For each $m \ge 1$ let $Q_m(t)$ be defined by

$$Q_m(t) = \frac{U^{\circ p^m}(t) - t}{U^{\circ p^{m-1}}(t) - t}.$$

The quotient is a series in o[[t]] since for any series $f \in o[[t]]$ with f(0) = 0 we have $(f(t) - t)|(f^{\circ r}(t) - t)$. Put $Q_0(t) = U(t) - t$. Our hypothesis on multiplicities says that no two of the series Q_0, Q_1, \ldots, Q_n have any roots in common. Thus the set of roots of Q_m in $\mathfrak M$ is exactly the set of points of $\mathfrak M$ that lie in an orbit of cardinality p^m under the action of U. Since, for $m \ge 1$, the Weierstrass degree of Q_m is $i_U(m) - i_U(m-1)$, the proof is done.

All the difficulty in Sen's Theorem is pushed into the construction of a lifting of the given $u(t) \in \kappa[[t]]$ to a series $U(t) \in \mathfrak{o}[[t]]$ of the desired form.

Proposition. Let κ be a field of characteristic p > 0, and let u be a series in $\kappa[[t]]$ with $u(t) \equiv t \pmod{t^2}$. If n is an integer such that $u^{\circ p^n}(t) \neq t$, then there is a complete discrete valuation ring $(\mathfrak{o}, \mathfrak{m})$ of characteristic zero, such that $\mathfrak{o}/\mathfrak{m}$ contains κ , and a lifting U of u to $\mathfrak{o}[[t]]$, such that all the roots of $U^{\circ p^n}(t) - t$ in \mathfrak{M} are simple.

Proof. First we find any complete discrete valuation ring at all, $(\mathfrak{o}_0, \mathfrak{m}_0)$, whose residue field contains κ : the Witt ring of the perfect closure of κ will do. Lift u in any way to a series $U_0 \in \mathfrak{o}_0[[t]]$ without constant term. Our strategy is to choose a ring $(\mathfrak{o}, \mathfrak{m})$ that is the integer ring of a finite algebraic extension of the fraction field of \mathfrak{o}_0 and modify U_0 by adding a carefully chosen $\Delta \in p^N \mathfrak{o}[[t]]$ so that $U = U_0 + \Delta$ satisfies the desired conditions. We make frequent use of the continuity of the roots of a series over \mathfrak{o} , by which we mean that if $\xi f(t) \in \mathfrak{o}[[\xi]][[t]]$ and if $\rho \in \mathfrak{m}$ is a root of multiplicity μ of $\mathfrak{o}_0 f$, then for all α in a sufficiently high power of \mathfrak{m} , there are precisely μ roots of αf , counting multiplicity, that correspond to ρ . In particular, when f is varied slightly in a suitably small open set about $\mathfrak{o}_0 f$, the multiplicities of roots cannot increase.

We recall also that a fixed point ζ of f(t) has multiplicity greater than 1 if and only if $f'(\zeta) = 1$ and that ζ will be a multiple root of $f^{\circ r}(t) - t$ if and only if $f'(\zeta)$ is an rth root of 1. The last tool used in the proof is the observation that if $\Delta \in \mathfrak{o}[[t]]$ is a series that vanishes at all roots of $U_0^{\circ p^n}(x) - x$ and if $U = U_0 + \Delta$, then every fixed point of $U_0^{\circ p^n}$ is a fixed point of $U^{\circ p^n}$. We will modify the original U_0 in this way by increments that successively decrease the multiplicity of each fixed point of $U^{\circ p^n}$ to 1. Note that our modified series has only finitely many periodic points of order dividing p^n since $u^{\circ p^n}(t) \neq t$.

Now for the details: In case a fixed point ζ of U itself is a fixed point of multiplicity greater than 1 in an iterate, we may assume (after perhaps making a finite extension of the base) that $\zeta=0$, so that $U^{\circ p^n}(t)-t$ takes the form $t^eG(t)$, with $G(0)\neq 0$ and e>1. The hypothesis on U is that U'(0)=w is a root of 1, so we set $\xi U(t):=U(t)+\xi tG(t)$, which, for small enough nonzero ξ , has $\xi U'(0)\neq w$, but so close to w that it cannot be a root of 1. Therefore, no iterate of the new series has a fixed point of multiplicity greater than 1 at 0.

A slightly more complicated situation is the one where ζ is a periodic point of order p^r , with $1 \le r \le n$. Call $\zeta_i := U^{\circ i}(\zeta)$, so that $\zeta_i \ne \zeta$ if $0 < i < p^r$. The hypothesis on ζ implies that

$$U^{\circ p^n}(t) - t = G(t) \prod_{i=0}^{p^r-1} (t - \zeta_i)^{e_i},$$

where G is nonzero at all the ζ 's and where $e_0 > 1$. We now set $\Delta(t)$ equal to the series $G(t)(t-\zeta)\prod_{i\neq 0}(t-\zeta_i)^2$ and set $\xi U:=U+\xi \Delta$. This has among its periodic points of order dividing p^n the corresponding periodic points of U, and since the hypothesis on ζ implies that $U^{\circ p'}(\zeta)=w$, a root of 1, we will be done when we show that we can adjust ξ so that $\xi U^{\circ p'}(\zeta)$ is so close to w that it cannot be a root of 1. We have

$$\begin{split} \xi U^{\circ p''}(\zeta) &= \prod_{i=0}^{p'-1} \xi U'(\xi U^{\circ i}(\zeta)) = \xi U'(\zeta) \prod_{i=1}^{p'-1} \xi U'(\zeta_i) \\ &= (U'(\zeta) + \xi \Delta'(\zeta)) \prod_{i=1}^{p'-1} U'(\zeta_i) = w + \xi \Delta'(\zeta) \prod_{i=1}^{p'-1} U'(\zeta_i) \,, \end{split}$$

and since we have constructed Δ so that $\Delta'(\zeta) \neq 0$, the proof is done.

REFERENCES

- [K] K. Keating, Automorphisms and extensions of k((t)), J. Number Theory 41 (1992), 314–321.
- [Sen] S. Sen, On automorphisms of local fields, Ann. of Math. (2) 90 (1969), 33-46.

Department of Mathematics, Brown University, Box 1917, Providence, Rhode Island 02912

E-mail address: ma406000@brownvm.brown.edu