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Abstract. In 1989 L. Blum, M. Shub, and S. Smale stated a problem whether

the recursively enumerable sets can be characterized as pseudo-diophantine de-

finable (Bull. Amer. Math. Soc. (N.S.) 21 (1989), 1-46, Problem 9.2). An
example shows that such a characterization is impossible. Nevertheless, a some-

what different characterization holds for the recursively enumerable sets over

reals.

Introduction

We assume the reader is familiar with the notion of function which is com-

putable by some machine or programme (cf. [1, 2]). The domains of such

functions are called recursively enumerable sets. Problem 9.2 of [1] asks the

question whether every recursively enumerable set over an ordered ring R has

a pseudo-diophantine definition, i.e., can be defined in the form:

(1) XQ>-c = {xeRn:(3qeQ)q(x,c)<0}

where c G Rm and Q. ç Z[x, y] is a pseudo-diophantine set of polynomials

with integer coefficients.

In § 1 we give an example of a recursively enumerable set over the ordered

field R of reals which cannot be defined in the form (1).

The example shows that a conjunction of two inequalities cannot be ex-
pressed by a countable disjunction of inequalities. But, over the reals (and

any archimedean ordered field) the effective disjunctions of pairs of inequali-

ties are sufficient to characterize the recursively enumerable sets. We prove this

in §2.

1. The EXAMPLE

Proposition 1. Let B = {{x, y) G R2 : x > 0 A y > 0}. Then B is a recursively

enumerable set but has no pseudo-diophantine definition.

Proof. B is clearly a recursively enumerable set. It is the domain of the func-

tion computed by the following programme:

while (x < 0) do x := x ; while (y < 0) do y := y.
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The pseudo-diophantine definable sets are countable unions of sets of the

form:

A(q) = {(x,y)eR2:q(x,y)<Q},

where q G R[x, y].
Suppose that for some polynomials fn G R[x, y](n G N) we have B =

\JnA(fn). It follows that

(2) {xeR:x>0} = {J{xeR:f„(x,0) = 0}.
n

Indeed, if x > 0, then fn(x, 0) < 0 for some n e N. But f„(x, h) > 0 for
h < 0, since (x, h) £ B . By the continuity of /„ , it follows that f„(x, 0) > 0.
Hence f„(x, 0) = 0.

But the equality (2) is impossible for any polynomials fn(x, 0). It follows

that B has no pseudo-diophantine definition.   D

2. The characterization

Let (Pln : n G N) be an effective enumeration of Z{x\, ... , x¡]. Let a, ß

be recursive functions. Let C\,..., c¡ G R. Consider the set, which we call ^2

type,

(3) X(a,ß;c) = {xeRm: (3n G N)(p*#(x, c) < 0 A/^/Qc, c) < 0)}.

We shall prove that the recursively enumerable sets over reals can be charac-
terized as 2¡2 sets.

Note 1. The class 32 generalizes the class of pseudo-diophantine definable

sets. Indeed, if fi ç Z\x\, ... ,x¡] is pseudo-diophantine (cf. [1, §9]) then
for some recursive function y we have Q = {PLn) : n G N}. Conversely, for

any recursive function y the set Q = {PLns : « G N} (as a set of integers

coding the coefficients of polynomials) is recursively enumerable. Hence, by

the Davis-Matijasevic-Robinson characterization, Q can be defined as

{q G Z[xi, ... , x¡] : (3k G Z')(h(k, q) = 0)}, for some polynomial h with
integer coefficients. So Q is pseudo-diophantine in the sense of [1].

It follows that the sets definable in the form ( 1 ) can be defined as

(4) X(y ;c) = {xeRm: (3n G N)(/>*„y (x, c) < 0)}

for some recursive function y and c e Rj. It is clear that (3) is a generalization

of (4).

Note 2. The 2¡2 sets are recursively enumerable over any field K containing

N. Indeed, over such a field the recursive functions are computable by some

machines. There are also universal machines UT1 such that for any n G N

and â G K1, the machine UT1 on input (n, a) computes the value of P'n(a)

over K (cf. [1,2]). It follows that the sets of the form (3) are domains of some

machines over K.

Note 3. The domains of computable functions can be defined by effective count-

able disjunctions of open formulae (cf. [2]). If / ç Km is the domain of some
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computable function by a machine over a field K, then there exists a recursive

function S such that

xel    iff    K\=\j4%+J{x,c)
n

where («Dj, : n G N) is an effective enumeration of the open formulae of vari-

ables xi,..., x¡ of the language of ordered fields and c G Kj.
It follows that, in order to prove that the recursively enumerable sets of reals

are 2¡2 sets, it is sufficient to show that any effective countable disjunction
of open formulae is equivalent over R to an effective disjunction of pairs of
inequalities.

Let (Qln : « G N) be an effective enumeration of formulae of the form

(5) qi(x)<0Aq2(x)<0,

where q¡ G Z[xi, ... , x¡].

We obtain the required characterization by showing that for any recursive

function X there exists a recursive function ß such that the formulae

V„0^j(x) and Vn®Ln\(x) are equivalent over the reals. This follows from

the proposition below.

Proposition 2. Let / G N. There exists a recursive function C such that for all
igN

R^O{(x)^\/elm(x).
n

Proof. Any open formula <j> is effectively equivalent to a finite disjunction of
formulae of the form:

s

q0(x) = 0Af\qi(x)>0,
i=i

where q¡'s are polynomials with integer coefficients.

Since q > 0 is equivalent to \/n(l - nq < 0), we can express 4> as an
effective countable disjunction of formulae of the form:

(6) f\qi(x)<0.
¡=i

We show that any formula of type (6) is effectively equivalent to a countable

disjunction of pairs of inequalities (i.e., type (5) formulae).

Let {(sn, tn) : n G N} be an effective enumeration of pairs of positive ra-

tionals. Set rn - min(s„, /„). Note that x>0Ay>0Az>0 is equivalent

to

(-jc < 0 A y2 + z2 < 0) V (-y < 0 A z2 + x2 < 0) V (-z < 0 A y2 + x2 < 0)

V V((* - Sn)2 + (y - tn)2 - rl < 0) A (-z < 0)
n

V V(Cy - s»)2 + (z~ <n)2 - 'I < 0) A (-X < 0)
n

V \J((z - s„)2 + (x- tn)2 - r2 < 0) A (-y < 0).
n
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This shows how 3-term inequalities can be effectively expressed as disjunc-

tions of type (5) formulae.

By repetition of this procedure we can express any type (6) formula and,

consequently, any open formula, in the required form.   D

Corollary. Any I CRm (m G N) is recursively enumerable if and only if I e&2

(i.e., can be defined in the form (3)).

Final remark. The proved characterization holds also for archimedean ordered

fields. In the proof of Proposition 2 we used the density of the rationals in the

field and the property: x > 0 iff (3« G N)(x > j¡). These properties are valid

in any archimedean ordered field.
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