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ASYMPTOTIC SOLUTION OF A SMALL PARAMETERED
2-D INTEGRAL EQUATION ARISING FROM A CONTACT PROBLEM

OF ELASTICITY BASED ON THE SOLUTION
OF A 2-D INTEGRAL EQUATION

TIAN QUAN YUN

(Communicated by J. Marshall Ash)

Abstract. Asymptotic solution of a 2-D integral equation of constant kernel

with small parameter e ,

Jrn    roo rit    roo

/     pdsdy/ + er       /     pds cosy/dy/ = G(r),
0   J-oo JO   J-oo

which occurs in a more exact form of Hertz's contact problem in elasticity, is
presented in this paper based on the solution of a 2-D integral equation

fit    />oo

idsdyi = F(r)
rn    roo

JO   J-oo

with constant kernel, and the unknown function p = p(s, y/) = p(t, <j>) is

subjected to the following two constraints:

p(t, 4>) = p(t)  v</>,

p(s, w) = 0    f0T(s,i/,) = (t,(t>)tE = {(t, 4>)\t < a}

where {s, y/) are local polar coordinates with origin at M(r, 0), with (r, 0)

measured by global polar coordinates (t, <j>) with origin at O(0, 0). A more

exact solution of Hertz's contact problem is found as an example.

1. Introduction

Contact problems have important applications in mechanical and civil engi-

neering. Hertz's contact problem is a well-known classical problem in elasticity,
and it is introduced by many textbooks (e.g., [1]). Hertz (1882) found, by con-
jecture, the solution of a contact problem of pressure distribution p between
two elastic balls in contact, governed by the integral equation

ru     roc

(1) /    /    pdsdip = (a-ßr2)l(kx+k2),
JO   J-oo
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Figure 1

where a, ß , kx, and k2 are constants, and the unknown pressure p is sub-

jected to the constraints

(2) p(t,4>)=P(t)   V0,

(3) P(s,v) = 0   foT(s,y/) = (t,<f>)tE = {(t,<j>)\t<a},

where (s, y/) are local polar coordinates with origin at M(r, 0) with (r, 0)

measured by global polar coordinates (t, </>) with origin at O(0, 0) (Figure 1).
However, as pointed out in [2], the classical Hertz's integral equation (1) is not

an exact equation for describing contact solids since the horizontal displacement
is neglected there. An exact integral equation of Hertz's contact problem, where

both vertical and horizontal components of displacement of points at contact
surfaces due to pressure p are taken into consideration, was derived in [2] and

is shown as

, . pdsdyv + er      pdscosy/dy/ + ô (      pdscosy/dip

= (a-ßr2)/(kx+k2),

where the limits of integration are the same as (1) and are omitted for conve-

nience, and a, ß, kx, k2, e, and ô are constants. To conserve space, the
expressions of these constants are omitted and we just mention that 0 < ô «

e < 1. If the small high-order term ô is omitted and the right-hand side is

replaced by a more general function G(r), then (4) becomes

rK     y»0O rK     rOO

(5) \    \    pdsdyi + er pdscosy/dip - G(r).
JO   J-oo JO    J-oo

If the small term e is further neglected, then (5) can be written as

(6) /    /    pdsdy/ = F(r),
JO    J-oo

where F(r) is a given function. If we take F(r) = (a - ßr2)/(kx + k2), then

(6) reduces to (1).
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Many studies of differential equations with small parameters can be found,

but studies of integral equations with small parameters are rarely seen. This

paper studies the solution of the 2-D integral equation (5) with small parameter

e by asymptotic expansion based on the solution of the 2-D integral equation

(6). Although Hertz found the solution of integral equation (1) by a conjecture,

the solution of Hertz's integral equation (1) has not been derived in a strict
mathematical way. In §2 the solution of the 2-D integral equation (6), which
is more general than Hertz's integral equation (1), is derived by introducing

the Radon transform, changing variables, and using the property of symmetry

shown in (2). In §3 the integral equation (5) is solved by asymptotic expansion.

Finally, as an example of the application of the asymptotic solution of (5),
a comparison between the asymptotic solution and Hertz's solution is given,
which shows that the classical Hertz solution is not exact enough for engineering

applications but that the asymptotic solution is better in satisfying the criterion
of the integral equation (5).

2. Solution of integral equation (6) subjected to (2) and (3)

No published paper concerned with integral equation (6) subjected to con-

straints (2) and (3) has been found. Here, we try to solve this problem as

follows.
CT (computerized tomography) is a revolutionary medical instrument. Its ap-

pearance shocked the medical world, winning for its inventors the 1979 Nobel

Medicine Prize. The Radon transform could be considered as a mathemati-
cal fundamental of image reconstruction from projections, especially for CT.

Therefore, the Radon transform is an interesting and fairly hot topic at the

moment. Here, we introduce the Radon transform to our problem. A Radon

transform of function / of two variables (s, y/) in local polar coordinates is
also a function of two variables (b, 6) but in global polar coordinates and is
defined [3] by

/oo _f(Vb2 + v2, -6 + tan~x(vIb))dv.
•oo

The Radon transform of / represents a line integration of f(s, y/) (— f(t, <f>))

along a line L with angle y/ (Figure 1), where b is the distance between

0(0,0) and L, 6 is the angle between OB and the xraxis, OBlL, and the
function / satisfies that

(8) f(s,v) = 0    foT(s,y/)iE,

where E is the domain of function /.
The relationship between local polar coordinates (s, y/) and global polar

coordinates (t, 4>) is

(9a) 5 • sin^ = t-sincj),

(9b) 5 • cos yi - t- cos <j> - r.

Now, according to the definition of the Radon transform of a function, the
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left-hand side (L.H.S) of (6) can be written as

Fit      i»O0 pit      i»00

L.H.S. =   /    /    p(s, y/)dsdy/ = I    I    p(t,4>)dsdy/
JO   J-oo Jo   J-oo

= [   [   p(VvT+~b2, (-6)+ tan~x(vIb))dsdip
Jo    J-oo

= ¡n[Rp](b,d)dy,= r   [Rp](b,6)de
JO J-n/2

= [Rp](b0, d0) = f ° p(Vv2 + b2) dv ,
J-v0

where t2 = b2 + v2, 5 = v + r • sin(-ö),  y/ + (-6) = n/2, VQ2 = a2 -b\,

bo = r • cos(-öo), 60 £ [—7e/2 , n/2], and (2), (3), and the theorem of integral
mean value of functions have been used. Both bo and ö0 can be determined
from the right-hand side of (6) for a given F(r).

Let

(10) w2 = b2 + v2

and, transforming the variable v to w , dv = (w/v)dw ; using (2), we have

L.H.S. = 2tt / w(w2 - bl)~xl2p(w) dw .
Jbo

In order to obtain a standard form of integral equation, let us change the variable
again. Let

(11a) u = a2-w2,

(lib) x = a2-bl.

Changing the variable w to u, du - -dw2 ; then the above L.H.S. becomes

(12) ng(x) = n Í (x-u)~x/2p(u)du      (0<x<a2).
Jo

The left-hand side of (12) should be a function of x and is denoted by g(x).
From (12), we should have

(13) g(0) = 0.

Substituting (12) into the left-hand side of (6), we have

(14) g(x) = (l/n)F(r)       (0<x<a2).

Now, g(x) is a known function by (14), and thus (12) is a standard Abel

integral equation and its solution is well known (e.g., in [4]):

(15)        p(x) = (2n) y/x-g'(0)+  fy/x-=U~g"(u)du
Jo

(0<x<a2),

where g' = dg/dx, x - a2 - b2, = a2 - r2 cos2 ö0, and cos do is determined
by £(0) = 0.
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Example. The Hertz contact problem of two elastic balls is considered as an

example; i.e., we take

(16) F(r) = (a-ßr2)/(kx+k2),

where a, ß , kx, and &2 are constants, and the geometric condition of the
problem gives a = 2ßa2 , where a is the radius of the contact base.

By (14), we have g(x) = Ax , g'(x) = A, g" = 0, where

(17) A = 2ß/[n(kx + k2)],

(18) x = a2 - bl = a2 - r2/2      (0<x<a2).

Then by (15), we have

(19a) p(x) = (2A/n)y/x~      (0<x<a2),

(19b) p(b0) = (2A/n)yJa2-b2      (0 < b0 < a).

Replacing the character bo by r, we have

(20) p(r) = {Aß/[n2(kx+k2)]} Va2 - r2       (0<r<a),

which is exactly the same as Hertz's solution [1]. (Note that the expression

(21) p(r) = (2A/n)^a2-r2/2      (0<r<V2a),

obtained by substituting x - a2 -r2/2 into ( 19a), does not represent the radical
distribution of contact pressure p(r), since the domain of p(r) is (0 < r < a)
and p(r) should satisfy the condition of zero pressure at the contact boundary,
i.e., p(r = a) = 0. Therefore (20) represents the radical distribution of contact

pressure.)

3. Solution of small parametered integral equation (5)

Suppose that

(22) p = po + epx + e2p2 + ■■• .

Substituting (22) into (5) and comparing the order of e" , we have

(23) ¡I' podsdy/ = G(r),

(24) // Pndsdyi --r      pn_x dscosy/dy/      (n>l),

where the limits of integration are the same as (1) and are omitted and p„
(n > 0) is subjected to constraints (2) and (3).

By (15), the solution p0 of (23) is

(25) Po(x0) = (2/n) [g'o(0)y/To+ I" y/xo~^ag'¿-(u)du        (0<xo<a2),
Jo

where go(*o) = (^ltt)G(r), x0 = a2 - r2 cosö0, and cos2 60 is determined by

So(0) = 0.
Once p„-X   (n > 1) has been found, then, under certain conditions (the

following Existence Theorem), the right-hand side of (24) is integrable and can
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be written as a known function of r so that (24) can be solved in the same way
as (23). Repeating the process of solving (24), we can obtain pn for n > 1.

In the following, we state a theorem, which guarantees the existence of p„

for n > 1.

Existence Theorem. Suppose that the given function go(xo) = (l/n)G(r) is con-

tinuous and has continuous derivatives g'Q, g'¿ in [0, a2]. Then

(1) (23) has a continuous solution Po(xo) in [0, a2].

(2) (24) has a continuous solution pn(x„) in [0, a2] for n> 1, where x„ =

a2 - r2cos2 dn, cos26„ is determined by g„(0) = 0, g„(x„) = (l/n)F„(r), and

Fn(r) = -rjjpn-x dscosy/dy/.

Using the first integral mean value theorem of functions, changing variables,

etc., we can prove this theorem. However, to conserve space, the proof is omit-

ted.

4. Example

Hertz's contact problem of two elastic balls is again considered as an example

for the small parametered integral equation (5).

From (20), instead of r by /, we have

Po(t) = (2A/n)(a2 - t2)l¡2       (0<t<a).

Substituting po into (24) and using (14), we have:

(26)

gi(xi) = - \-r       /    po(t)dscosy/dy/
K  L       Jo   J-oo

a a     rn    rV

=-=- /    /   (a2 - r2sin2 yv - v2)x/2dv cos y/dy/
rc   Jo  Joto Jo

K - xx(a2 - xx)1'2 ;

(27) g'x(xx) = K(a2 - xx)x'2 - (xx/2)(a2 - xx)-x'2,

g'x(0) = Ka;

(28) g'x'(xx) = K(a2 - Xx)'"2 + (xx/A)(a2 - xx)'3'2,

where

(29) A- = -(4v/3/i/7r2)(l + 7r/2),

(30) Xx=a2-r2/3,

t2 — v2 + r2sin2 y/, v — s + r • cos^  (Figure 1), and Xx — a2 - r2cos2Qx

(cos2 Qx = 1/3 is determined by gx(0) = 0) have been used.

Substituting (26)-(28) into (15), we have

Px(xx) = 1M(é-x)\oi^^
(31) * a~^

3
+ 4

{5xx     a2\ -y/x~x-a        /_'

(0 < xx < a2), and so on.
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Finally, the solution of (5) can be obtained by (22).
Let us make a comparison on maximum pressure p(0) at the centre r = 0,

i.e., x = a2, of the contact range, between Hertz's solution po(0) and the

asymptotic solution p(0) = Po(0) + epx(0) of this paper:

po(0) = (2A/n)a,       px (0) = ±(3K / (2n))a2.

If the relative error e is defined by

(32) e = \[p(0)-p0(0)]/po(0)\ = \epx(0)/p0(0)\

and the expression of small parameter e is listed by [2]

1

(33) 2

(1-21/0(1 +ux)E2 |  (l-2u2)(l+u2)Ex

Rx R2

{[(Ex(l-v2)]-x + [E2(l-vi)]-1},

where Ex, E2, vx, V2, and Rx, R2 are the elastic modulus, Poisson's ratio,

and the radius of the two elastic balls respectively, then substituting po(0),

px(0), and e into (32), for Ex - E2, vx - v2 - 0.3, Rx - R2 - 10a, we
have e = 7.7342%. This result shows that from the criterion of the more
exact integral equation (5), the classical Hertz solution is not exact enough for

engineering applications and the asymptotic solution is better.
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