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EQUIVALENCE OF C7-ALGEBRAS FOR ABELIAN G

ALEXANDRE TURULL

(Communicated by Ronald M. Solomon)

Abstract. We describe the equivalence classes of central simple G-algebras

over an infinite field F for G a finite abelian group, provided the following

holds. For each prime p for which the field F has primitive pth roots, the

Sylow p-subgroup of G is either cyclic or elementary abelian.

Introduction

The description of the Schur indices of the characters of the covering groups
of the symmetric and alternating groups in [2] made use of the elements of

the Brauer-Wall group; see [1] for a definition of the Brauer-Wall group. The

characters of these groups come in sets of three: either two characters of the

covering group of the symmetric group and one of the alternating group (the
former are then the two extensions of the latter), or one character of the covering
group of the symmetric group and two of the alternating group (the former is

then induced from each of the latter ones). In [2], it is seen how to each such

triple corresponds, in a natural way, an element of the Brauer-Wall group. This

element gives the following information about the triple: Whether the characters
of the covering group of the symmetric group is induced or an extension of a
character of the covering group of the alternating group; the field of definition of

the three characters involved; and the centralizer algebra (and hence the Schur

indices) of each of the three characters.

The use of the Brauer-Wall group is possible because the index between the

two groups involved is two. In [3], it is shown how the results mentioned in

the previous paragraph can be generalized to quotient groups of arbitrary finite

order. One needs a generalization of the Brauer-Wall group. Fix some finite

group G (which in the applications will be the quotient group of the group by

its normal subgroup) and a field F of characteristic zero. First one defines
what is meant by a central simple C7-algebra A. Simple means, of course,

that it has exactly two G-invariant two-sided ideals. Central here means that

Cz(A)(G) - F. One then defines which, among those, are trivial (/-algebras.
These are the (/-algebras E which are just the full F-endomorphism algebra
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of a nonzero FG-module, with the natural action of G on E. We say that

two central simple (7-algebras A and B are equivalent if there exist trivial

(7-algebras E and E' such that

A <g> E ~ B ® E',

as (7-algebras, where the tensor products are over F. This is an equivalence

relation, and the set of equivalence classes is denoted by S(G, F). In the case

where G — 1, this is just the set of elements of the Brauer group of F. In the

case where \G\ - 2, this can be seen to be equivalent to the set of elements of

the Brauer-Wall group.
Let Ti be a finite group and Y2 be a normal subgroup of Yx such that

Yx/Y2 ^ G. Then, to each irreducible character % of Yx corresponds, in

a natural way, an element [[#]] of S(G, Q0f|r2)) ; see [3] for details. The

element [[x]] contains in it the information about the operations of induction
and restriction among the characters of the subgroups of Yx that contain Y2 ,
their relative degrees, their fields of definition, and their centralizer algebras (and

hence their Schur indices); see [3] for details. The study of Clifford theory with

Schur indices can then be decomposed into two problems. One is to describe

the equivalence classes of central simple (7-algebras. The other is to assign,

to each particular character and normal subgroup, the corresponding class of

central simple (7-algebras.
Hence, one would like, in particular, to effectively describe the equivalence

classes of (7-algebras for each finite group G. In [4], we define for each central
simple (7-algebra A an inertia subgroup I of G. This subgroup is defined up

to conjugacy in G and depends only on the equivalence class of A. Further-

more, we define the /-centroid A(A, /) (or simply A(A) if / is normal in G)

of A, which is a central fully /-graded NG(/)-algebra over F of dimension

|NG(/)|, and depends also only on the equivalence class of A . See §1.1 below
for the definition of a central fully /-graded NG(/)-algebra over F . In [5], it is

shown how to characterize the equivalence classes of central simple (7-algebras

A which have a fixed centroid, provided the inertia group is normal in G and

the centroid has a special property, namely being complemented; see Definition

1.2.
In the present paper, we show that, provided G is abelian and for each prime

p for which the field contains a primitive p-root of 1, the Sylow p-subgroup
of G is either elementary abelian or cyclic, then the results of [5] suffice to

characterize each equivalence class of central simple (7-algebras. Suppose F is

an infinite field and C7 is such an abelian group. Let / be a subgroup of G.

We show that these conditions imply that every central fully /-graded (7-algebra

(see Definition 1.1 below) will have some complement R (see Definition 1.2

below). Now the central fully /-graded (7-algebras A over F which admit the

complement R are classified, up to isomorphism, by Ai as a (7-algebra and
the invariant n(A, R) £ H2(/, Fx) ; see Theorem 2.4 in [5] for a more precise

statement. Furthermore, one can describe the equivalence classes of central
simple G-algebras with /-centroid A as follows.

Theorem. Let G be a finite abelian group and F an infinite field such that, for

each prime p for which F has a primitive pth root of 1, the Sylow p-subgroup of

G is either cyclic or elementary abelian. Fix a A as above. Then the equivalence

classes of central simple G-algebras whose inertia group is I and for which
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A(A, I) ~ A are in one-to-one correspondence with the cosets Br(F)/ Sbr(P, Ai ).

Here Bt(F) is the Brauer group of the field F and Sbr(P,Ai) is a finite subgroup

of Br(F) which depends only on Ax and the action of R on it; see Definition

4.8 in [5].

Proof. Since the centroid has a complement (see Theorem 2.7 below), the the-

orem follows directly from Theorem 5.3 in [5] (see also Theorem 1.3 below).
We refer the reader to [5] for further details.

In particular, the theorem classifies all the classes of central simple G-algebras
over F, whenever F is a real field and G is a abelian group with either cyclic

or elementary abelian Sylow 2-subgroup.

1. Some definitions and results

Throughout, F will denote an infinite field and G a finite group. We begin

by recalling some of the basic definitions and results from [4] and [5]. We refer

the reader to these papers for further notation.

Definition 1.1. Let F be an infinite field, H a finite group, and / a normal

subgroup of H. A structure A is said to be a central fully I-graded H-algebra

over F if the following hold.
(a) A is a fully /-graded algebra over F , that is, we are given

A = ®A,
gei

where this is a direct sum decomposition of vector spaces over F, and the

algebra structure of A is such that A^A/, = Agn as sets for all g, h £ I.

(b) We are also given an action of H on A in such a way that the action
preserves the algebra structure of A, for every h £ I and a £ Ah, b £ A, we

have ab - hba, and for all h £ H, g £ I, a £ Ag , and we have ha £ Ahgh-¡.
(c) Finally, Ai is a finite-dimensional semisimple commutative algebra, the

centralizer of the action of H on Ai is / and CAl (H) = FA = F .

Definition 1.2. Let / be a normal subgroup of G. Let A be a central fully
/-graded G-algebra. A complement to A is any subgroup R of G such that

RCZ(G), Rnl acts trivially on A, and G = IR. We denote by k(A) the set
of all complements to A. We say that A is complemented if k(A) ^ 0.

Theorem 1.3. Let F be some infinite field. Let G be a finite group, I and
R normal subgroups of G such that G = IR and R ç Z(G). Let A be
a central fully I-graded G-algebra such that R £ k(A) . Set n = n(A, R) £
H2(/, Fx). Pick any t\ g E(n, R), which exists by Lemma 3.2 in [5]. Then,
the equivalence classes of central simple G-algebras A such that A has inertia

group I and A(A) ~ A are in one-to-one correspondence with the elements of

Br(P)/Sbr(P, A,) via the map

A-+b(A,R,Ç).
Proof. This is just Theorem 5.3 in [5]; see [5] for the unexplained notation.

2. A BILINEAR FORM

Suppose now that G is a finite abelian group and A is a central fully /-
graded G-algebra over the infinite field F. From A one can easily obtain a

bimultiplicative symplectic form on /.
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Definition 2.1. We define the map

ßA:IxI ^Fx

as follows. If g, h £ I let tg £ Ag and tn £ An be any invertible elements.

We set
ß(g,h) = tgthrgxth-x.

Proposition 2.2. Let A be a central fully I-graded G-algebra. Then ßA is well

defined and bimultiplicative and satisfies

ßAh ,h) = l

for all h£ I.

Proof. Since A is a fully /-graded algebra, there exist invertible tg and th . It

follows that
tgtnrgxrhx£Ax.

Let t'g £ Ag and t'h £ An be invertible in A. Then there exist z, z' G A* such

that t'g = tgZ and t'h = tnz'. Hence,

so that ßA(g , h) is a uniquely defined element of Ax . Since G acts on A

stabilizing both the sets A^ and An , for every x £ G, we have

xßA(g,h) = ßA(g,h).

Hence, ßA(g, h) G CAl(G)x = Fx , as A is a central fully /-graded G-algebra.

Hence ßA is well defined.
Let g, h, h' £ I and pick tg £ Ag, tn £ Ah , and tk, £ An< all invertible.

Then

ßA(g, hh') = ^(ththl)(tnth,)-x = hhßA(g, h')t~x = ßA(g, h)ßA(g,h'),

as ßA(g, h') G Z(A). Hence ßA is multiplicative in the second variable. A

similar argument shows ßA is bimultiplicative. It follows immediately from

the definition that ßA(h , h) = 1 for all h £ I. This completes the proof of the
proposition.   D

Definition 2.3. Let A be a central fully /-graded G-algebra. We set

ßi = {h£l:  for every g £ I, ßA(h, g) = 1}.

Proposition 2.4. Let A be a fully I-graded central G- algebra. Then ß£ is a

subgroup of I. Furthermore, whenever p is a prime and p divides the order of

the quotient group I/ßA , then F has a primitive pth root of 1 and the Sylow

p-subgroup of I/ßA  is not cyclic.

Proof. That ß£ is a subgroup of / follows immediately from the fact that ßA

is bimultiplicative. Suppose p is a prime and p\ \I/ßA\ ■ If g, h £ I, since
ßA is bimultiplicative and ßA(gh, gh) = ßA(g, g) = ßA(h, h) = 1 , we have

1 =ß*(g,h)ßA(h,g) so that

ßA(h,g) = ßA(g,hyx



EQUIVALENCE OF G-ALGEBRAS FOR ABELIAN G 1659

holds. Hence, whenever g, h £ I and x, y G ß£ we have

ßA(gx, hy) = ßA(g, h)

since, by the definition of ß^ and the above, ßA(x, h) = ßA(g, y) = ßA(x, y)

— 1. Set 7 = 11 ßA . It follows that we may define a map

y?A:7x7^Fx

by ßA(gßA , hßl) - ßA(g,h). Then ßA is bimultiplicative. By Cauchy's

Theorem, there exists some element h £ 7 of order p. Since h ^ 1, there

exists some ~g £ 7 such that ßA(h,~g) ¿ 1. Since ßA is bimultiplicative ,

ßA(h, ~g)p - ßA(l, g) = 1. Hence ßA(h ,g) is a primitive pth root of 1 and
an element of F.

Suppose, by way of contradiction, that the subgroup (h ,g) of 7 generated

by h and g is cyclic. Say (h,~g) = (a). Then, by Proposition 2.2,

~ßA(a-,ä) = l,

and, since ßA is bimultiplicative and both h and ~g are powers of ä, it follows

that
ßA(h,g) = l,

a contradiction. Hence (h, g) is not cyclic. Since 7 is finite abelian and h

has order p, this implies that (h, g) does not have a cyclic Sylow /^-subgroup.

Hence the Sylow ^-subgroup of 7 is not cyclic either. This concludes the proof

of the proposition.   D

Corollary 2.5. Suppose A is a central fully I-graded G-algebra. If for every

prime p for which F has a primitive pth root of I, I has a cyclic Sylow p-

subgroup, then ß£ = I. In particular, this will be the case if F - Q and I has
a cyclic Sylow 2-subgroup.

Proof. This follows immediately from Proposition 2.4.

Proposition 2.6. Suppose A is a central fully I-graded G-algebra. Then ß^

is the group of gradings of Z(A). Furthermore, as a subgroup of G, ß£ acts
trivially on A.

Proof. For each h £ I, choose some tn £ Ah which is invertible in A. Then

A is generated, as an algebra, by Ai and {t„: h £ 1}. By Definition 1.1(b),

A] is in the center of A. The center Z(A) of A is a graded subalgebra of A
generated by Ax and

{tn : th commutes with tg for all g £ G}.

Hence, it follows from Definitions 2.1 and 2.3 that the group of gradings of

Z(A) is exactly ß^. Let h e ßA . Pick any element in A, say a £ A. By
Definition 1.1(b), we have

thaqx =ha.

Since tn £ Z(A), it follows that ha = a for every homogeneous element a £ A.

Hence, as a subgroup of G, ß^ acts trivially on A. This completes the proof
of the proposition.   D
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Theorem 2.7. Let A be a central fully I-graded G-algebra, where G is an

abelian group. Then, if for every prime p for which F contains a primitive

pth root of l, G has either a cyclic or elementary abelian Sylow p-subgroup,

then k(A) ^ 0. If, for every p for which F contains a primitive pth root of I,

G has a cyclic Sylow p-subgroup, then ß£ = I.

Proof. Suppose that for every prime p for which F has a primitive pth root
of 1, G has either a cyclic or an elementary abelian Sylow p- subgroup. Let n

be the set of all primes p dividing |///?A | • Let H be the Hall 7t-subgroup of
G, and H' be the Hall ^'-subgroup of G. By Proposition 2.4, for each p £ n,

F has a primitive pth root of 1 and the Sylow p-subgroup of G is not cyclic.
By hypothesis, it follows that the Sylow p-subgroup of G is then elementary

abelian. Hence, H is a direct product of elementary abelian groups. Therefore

/ n H has a complement in H, so there is some subgroup C of H such that

C(If\H) = H and C n / = 1.
Set R = CH'. Then RI D HH' = G, so RI = G. Suppose p is a prime

and p|[Pv n /: R n ß£]. Let P be the Sylow p-subgroup of G. Then P n S is
the Sylow p-subgroup of S, for every subgroup S of G. Hence, p|[P n R n
I: PDRnß^]. Since P n R n I/P nRnß^ is isomorphic to a subgroup of

P n I/P n ß£ , p £ n. By construction, it then follows that P n R = P n C
and PnPn/ = PnCn/= l,a contradiction. Hence, no such p exists
and Rn I ç ß£ . By Proposition 2.6, P n / acts trivially on A. Hence, by

Definition 1.2, R £ k(A) and k(A) ^ 0, as desired. That I = ßA whenever
for every p for which F contains a primitive pth root of 1, G has a cyclic

Sylow p-subgroup, follows immediately from Corollary 2.5. This completes the

proof of the theorem.   D
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