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EMBEDDING THEOREMS
FOR RESIDUALLY CERNIKOV CC-GROUPS

M. GONZÁLEZ AND J. OTAL

(Communicated by Ron Solomon)

Abstract. Embedding theorems for residually Cernikov CC-groups are ob-

tained, extending the corresponding results on FC-groups and improving some

previous results on CC-groups.

1. Introduction

Groups with Cernikov conjugacy classes, or CC-groups, were introduced by

Polovickii [10, 11] as an extension of the concept of FC-groups. A group G

is said to be a CC-group if G/CG(xG) is a Cernikov group for each x £ G.
In the theory of FC-groups, a classical problem introduced by P. Hall [8] was

embedding periodic FC-groups with some additional properties as subgroups
of direct products of finite groups. Since then, his work on periodic FC-groups

has been continued in a sequence of papers, such as, for example, those of

Gorcakov and Tomkinson (see [15] for a complete account of this subject).
The main result in this line is the characterization of the periodic residually
finite FC-groups as subgroups of centrally restricted products of finite groups.

The aim of this paper is to study the natural extension of embedding the-

ory from FC-groups to CC-groups. There have been a few papers previously

written on this subject. In [10], the first of these papers, the following result is

presented: a countable periodic residually Cernikov CC-group is a subgroup of

a direct product of Cernikov groups. In [1] Franciosi, de Giovanni and Tomkin-

son showed that a CC-group with trivial center (and so residually Cernikov) is

a subgroup of a direct product of Cernikov groups. We improve this result in

Theorem 5.7, where we obtain the same conclusion if the residually Cernikov
CC-group has countable center. Finally, in [4] it is proved that a countable

periodic CC-group is a section of a direct product of CC-groups. Here (The-

orem 4.2) we obtain an analogous result for periodic residually Cernikov CC-

groups of arbitrary cardinal. In Section 5, we obtain, mainly, embedding re-

sults for G/Z(G) and G' and we prove (Theorem 5.7) that a periodic residually

Cernikov CC-group G with G', G/G' or Z(G) countable is a subgroup of a

direct product of Cernikov groups.

Received by the editors April 19, 1993 and, in revised form, November 15, 1993.

1991 Mathematics Subject Classification. Primary 20F24.
Key words and phrases.  CC-group, embeddings, residually Cernikov.

© 1995 American Mathematical Society

2323



2324 M. GONZALEZ AND J. OTAL

In the following, we shall use Polovickiï's theorem characterization of CC-

groups (Theorem 4.36 of [12]), which assures that, if G is a CC-group, then

the normal closure xG is Cernikov-by-cyclic and [G, x] is Cernikov for every

x £ G. Our group-theoretic notation is standard and is taken from [12] and

[15]. We will refer by &3f(C u A0) (€&2l(C u A0), resp.) to the class of

(quotients of, resp.) subgroups of direct products of Cernikov and torsion-

free abelian groups. We extend Tomkinson's definition of centrally restricted

product of finite groups (see [15], p. 29) to the centrally complete product of

Cernikov groups, denoted by Z*C, which is the subgroup of the cartesian

product where every element has a finite number of noncentral components.

Its torsion subgroup is, precisely, the centrally restricted product, denoted by

ZrC. A residual system of Cernikov groups is a set of normal subgroups N¡

of G with trivial intersection and such that G/N¡ is a Cernikov group for all

i £l. We denote it by {N¡ : i £ 1} .

2. Auxiliary results

In this section, we shall state some auxiliary results necessary for the following

sections.

Lemma 2.1. (i) The classes of FC-groups and CC-groups are closed under the

formations of centrally restricted or complete products.

(ii) Every abelian group is an Zr*C-group.

(iii) ¿&{CüAo)<Zr0C<&99r(C\JAo).
(iv) 33fä < ZrC < SS^IC.

Proof. The proof is an immediate consequence of the definitions. For (ii) and

(iii), note that the additive group of the rational numbers is in the class Zr*C,

being a direct summand of the cartesian product of countably many copies of

c-poo.   n

Now, we are embedding a particularly simple class of groups, which contains

the abelian groups.

Proposition 2.2. If G is a central-by-Cernikov group, G £ 5&(C U Ao). Fur-

thermore, if G is periodic, G £ S^2fë.

Proof. Let Z = Z(G) so that G/Z is Cernikov. It is easy to check that

any abelian group is residually Cernikov, and so Z is residually Cernikov. Let

{Z, : i £ 1} be a Cernikov residual system of Z . Each Z¡ is a normal subgroup

of G, and since G/Z and Z/Z¿ are Cernikov groups, so is G/Z¡. Therefore

G is residually Cernikov. Now, by Theorem 4.11 of [12], G' is Cernikov. It
is easy to see that there exists a normal subgroup N of G such that G/N is a

Cernikov group and NnG' = 1. Thus G < (G/N) x (G/G'). Since G/G' is
an abelian group, G/G' £ &2¡(C U A0), and so G £ S&í(C U A0).   D

The following result relates embeddings of certain subgroups with embed-

dings of the whole group.

Proposition 2.3. If H is a subgroup of the CC-group G such that G — HZ,
with Z = Z(G) one has

(i)   H is residually Cernikov if and only if G is residually Cernikov;

(ii)   H£Zr*C if and only if G£Zr*C;
(iii) z/ G is periodic, H £ ZrC if an only if G £ ZrC.
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Proof. Let us observe that the converses are evident, and that we can deduce

(iii) from (ii). In order to prove (i), let {//,: i £ 1} be a Cernikov residual

system of H. Since G = HZ , H¡ is a normal subgroup of G. Thus, G <

Y[{G/Zj: i £ I}. Since H/H¡ is Cernikov and ZHj/H¡ is central in G/H¡,

we can deduce that G/H¡ is central by Cernikov. By Proposition 2.2, G/H¡

is residually Cernikov, and therefore so is G. In order to prove (ii), let us

assume that H £ Zr*C. We deduce that there exists a Cernikov residual system

{//,: i e /} of H such that H < Zr*(H/H¡). Since G = HZ, each H¡ is a
normal subgroup of G, and we can embed G into T[{G/Zi : i £ 1} . It is easy

to see that G < Zr*(G/H¡). As in (i) G/H¡ is a central-by-Cernikov group,

and by Lemma 2.1 and Theorem 2.2, G/H¡ £ Zr*C, and so G £ Zr*C.   G

The next result shows that the periodicity is not an important hypothesis

when considering centrally restricted products of Cernikov groups.

Proposition 2.4. If G £ Zr*C, then G is isomorphic to a subgroup of the direct

product of a ZrC-group and a torsion-free abelian group.

Proof. By hypothesis, G < Zr*{G¡: i £ 1}, where G¡ are Cernikov groups.

Zr'Gi = ZD, with Z = T\{Z(G¡): i £ 1} and D = Dr{G¡: i £ 1} . It is clear
that we can assume G = ZD. Thus Z = Z(G) and G/Z is a periodic group.
Let F be a maximal torsion-free subgroup of Z. Then Z/V is a periodic

group, V n/> = 1 and G<(G/V)x (G/D). The abelian group G/D = ZD/D
can be embedded into a torsion-free abelian group and a periodic abelian group,

and the latter belongs to ZrC by Lemma 2.1. Since G/V = (Z/V)(DV/V),
it is a central extension of the ZrC-group DV/V = D. By Proposition 2.3,
G/V £ ZrC, and the result follows.   D

The next result shows that there exist some aspects in the theory of embed-
dings of CC-groups that have a better behaviour than in the FC-case. It is

known that the torsion subgroup of the abelian group \~[{Cpn : n £ N} is not a

subgroup of a direct product of finite groups (Example 2.6 of [15]). This is an
example of a centrally restricted product of a countable number of finite groups

which does not belong to the class 3*2) F . The next theorem shows, however,
that an analogous statement is true for CC-groups, though the problem is still

open for an uncountable set of indices.

Theorem 2.5. If G < Zr*{G„: n £ N}, with G„ Cernikov, then

G£33f(CöA0).

Proof. Let us suppose first that G is periodic. Let T — T(T[Z(G„)) and D =
DrGn such that G < ZrGn = TD. We can assume G - TD. If T is countable,

so is G, and by Theorem 6 of [10] G £ Sñf&C. So let us assume that T is

uncountable. T is abelian and periodic, so we can suppose T < Dr{E¡ : i £ 1} ,

where E¡ are Cernikov groups and / is uncountable. Since D is countable,

so is D n T, and there exists a countable subset J of I such that D n T <
Dr{Ej: j £ J}. Let L = T n (Dr{E¡: i £ I\J}). Thus, T/L is a countable
group. Furthermore, L < G because L<T <Z(G) and LnD = LnTnD = 1.
Then G < (G/L) x (G/D). But G/D is a periodic abelian group, and so

G/D £ S^ C. On the other hand, G/L = (T/L)(DL/L). Since DL/L S D,
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DL/L is a residually Cernikov group, and by Proposition 2.3, so is G/L. But

this group is countable and periodic, and so G/L £ S?2¡C, and the theorem
is proved if G is periodic. In the general case, we can suppose G = ZD,

where Z = T\Z(G„). Proceeding as in Proposition 2.4 and keeping the same

notation, we obtain G < (G/V) x (G/D), where G/D is abelian and G/V is

a periodic group. Besides, G/V = (Z/V)(DV/V). Proceeding as in the proof
of Proposition 2.3, G/V < Zr*{F„: n £ N} , where F„ are periodic central-by-

Cernikov groups. The proof of Proposition 2.2 shows that Fn <CnxAn , where

Cn is Cernikov and An is an abelian group. So G < ZrCn x T[An x G/D. By

the first part of the proof ZrCn £ <93fC, and so G £ 33?(C U A0).   a

The next result represents a crucial point in establishing the general embed-

ding results. It extends from FC-groups, but the proof becomes more compli-

cated and tedious by changing finite to Cernikov.

Theorem 2.6. Let p be an ordinal limit. Let us assume that {Na: a < p) is a

family of normal subgroups of the CC-group G such that f){Na: a < p} = 1,

and let us call Ca to CG(G/Na). Let {Ha: a < p} be an ascending chain of

normal subgroups of G satisfying the following properties:

(i)   [G, Ha] < Nß , for all ß>a.
(ii)   G = CaHa+2, for all a < p.

Then G < Zr*{G/Na: a < p).

Proof. Since {A^: a < p} = 1, we can suppose that g < Y\{G/Na: a < p}.

Let us assume that the theorem is false. Then there must exist an element

x £ g with an infinite number of noncentral components. So, we can take an

infinite number of ordinals ax < a2 < ■■■ < an < ■■■ such that x does not

belong to Ca„ for every n . Since, by condition (ii), [G, x]Na = [Ha+2, x]Na ,

it follows that [Han+2, x] is not contained in A/Qn, for each n. Now, by

condition (i), [Han+2, x] < Nam for all m > n + 2, because it is clear that

ß/i+2 > <*n + 2 for all n. Let us define M„ = f]{Nai: i > n}. Thus we
have an ascending chain Mx < M2 < ■ ■ ■ < M„ < ■ ■ ■ such that [Han+2, x] <

[G, x] n Mn+2 but [//Q„+2, x] is not contained in Mn . So, [G, x] n M2 <

[G, x] n M4 < ■ ■ ■ < [G, x] n M2n < ■■■ is a strict ascending chain in [G, x].

Since [G, x] is a Cernikov group, there must exist an m such that for n > m

the quotient ([C, x] n M2n+2)/([G, x] n M2n) is finite. Since [Ha2n+2, x] <

[G, x]nM2n+2 , [Ha2r+2, x]/[Ha2n+2, x]nM2n is also finite. Now, M2n < Na2n,

and thus, we deduce that [Hau+2, x]/(Hau+2, x]nNau) is finite. This group is

isomorphic to [G, x]Na2JNa2ri, and so the factors [C, x]NaJNak are finite for

k = 2m, 2m+ 2, ... . Let G be G/(f){Nak : k — 2m, 2m+ 2, ...}), and let us

denote by C the image of any subset C of G under the canonical map. Thus

[G, x]< Yl{[G, x]NaJNnk : k £ N} . Since the factors of this cartesian product

are finite, it follows that [G, x] is residually finite. Since [G, x] is Cernikov,

[C, x] must be finite. But for each natural number k , there exists gk £ Hak+2

such that [gk , x] does not belong to Nak . Since [gk , x] e {fl Naj : j > k} , we

conclude that the elements [gk, x] are all different. This implies that [G, x]

is infinite, which is a contradiction, and the result follows.   D

If G is an FC-group and TV is a normal subgroup of G such that C7/7Y is

a finite group, there exists a finite subset I of G such that G = XGN. This
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is not true if G/N is a Cernikov factor of a CC-group (see, for example, a

Prüfer p-group). The next lemma is the solution of this problem that we need

for our purposes.

Lemma 2.7. Let N be a normal subgroup of a CC-group G such that G/N is

a Cernikov group. If C/N - Z(G/N), then there exists a finite subset X of G

such that G = CXG. (Observe that C = CG(G/N)).

Proof. Let D/N be the radicable part of G/N. Thus, G/N contains a fi-
nite subgroup S/N such that G = SD. There exists a finite subset X of G

such that S = (X)N, and therefore G — (X)D. Since D/N is radicable and

S/N is finite, by Lemma 3.29.1 of [12], D/N = ([/), S]N/N)(CD/N(S/N)) <

[D,S]C/N. Thus G = (X)D = SC[D,S]. But [D,S] < NXG, and so
G = CXG, and the proof is complete.   D

3. Residually Cernikov CC-groups with G/Z(G) countable

Analogous to the classification of periodic residually finite FC-groups (cf.

[5], [14], [15]) as subgroups of centrally restricted products of finite groups, we

try to classify the residually Cernikov CC-groups. The first step was done by

Polovickii [10], who showed that a periodic residually Cernikov group which is

countable is a subgroup of a direct product of Cernikov groups. In this section,

we generalize this result to residually Cernikov groups with G/Z(G) countable.

Theorem 3.1. If G is a residually Cernikov CC-group with a countable residual

system, then G £ Zr*C. Furthermore, if G is periodic, then G £ ZrC.

Proof. Clearly, the second statement follows from the first. We know that G <

Y[{Fn : n £ N}, where F„ is a Cernikov group for each n. For each k >

1 let Gk := G n (ÜÍF«: n > k}). We construct by induction two chains

of normal subgroups of G, {H„ : n £ N} and {M„ : n £ N}, satisfying the

following conditions: (a) {//„ : n £ N} is an ascending chain, and //„ is the
normal closure in G of a finite subset of G. (b) For each n > 1 , Mn — GSn,

where sn > n and sx < s2 < ■ ■ ■ < s„ . In particular, {Mn : n £ N} is a

descending chain, (c) For every n > 1, G = H„CG(G/M„-X). (d) For every

n > 1, T(Hn) D M„ = 1. Let us define Hx = 1, Mx = Gx, and let us
suppose that we have constructed n - 1 elements of both chains: Hx < H2 <

••• < //„_i and Mx > M2 > ■■■ > Mn-X . G/M„-X is clearly a Cernikov
group, and so by Lemma 2.7, there exists a finite subset Y of G such that

G = YGCG(G/M„^X). By hypothesis, H„-i = XG, for a finite subset X of G.

If we define Hn := (X u Y)G, it is clear that (a) and (c) are satisfied. T(Hn)

is a Cernikov group, and since {Gn : n £ N} is a descending chain, there exists

m > 1 suchthat T(Hn)nGm is minimal. Thus T(H„)nGm — 1. Let us define

sn = max{w, n, sn-X + 1} and m„ = GSn. Then, it is clear that conditions (b)

and (d) hold, and our construction is complete. From (b) we have f\{M„ : n >

1} = f|{c?„: n > 1} = 1. Let us define N0 = Nx and TV, = MMT(H),
for / > 1. By Lemma 2.20 of [15], Ç\{Nc i > 0} = 1. For each k £ N,
[G, Hk] < T(Hk) and T(Hk) < T(Hr) if r > k. Thus [G,Hk]<Nr, r>k.
Besides, by (c) Hk+2CG(G/Nk) > Hk+2CG(G/Mk+X) = G. By Theorem 2.6 G
is isomorphic to a subgroup of the centrally complete product of the G/N¡.
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Since G/Ni is a quotient of G/Mi+X = G/Gs¡+I, G/N¡ is Cernikov, and the
result follows.   D

The following result extends Polovickii's theorem given in [10].

Corollary 3.2. Let G be a residually Cernikov CC-group with G/Z(G) count-

able. Then, G £ 3B(C V) Ao). Furthermore, if G is periodic, G£33JC.

Proof. The second sentence follows from the first. By hypothesis G = HZ,

where H is normal in G and countable, and Z = Z(G). So, G' — H' is a

countable subgroup of G. For each nonunit element x £ G', there exists a

normal subgroup Nx of G with G/Nx a Cernikov group and x £ Nx. So,

if N = f){Nx: 1/jceG'}, N n G' = 1. Then, G < (G/G1) x (G/N). But
(G/G') £ 33(CuA0) and {Nx/N: 1 ̂  x £ G'} is a countable residual system

for the CC-group G/N. By Theorem 3.1, G/N £ ZrC, with a countable
number of components and, by Theorem2.5, G/N e 33>(C U A0), and the

proof is complete.   G

4. Residually Cernikov CC-groups as sections

Gorcakov [5] showed that periodic residually finite FC-groups are sections

of direct products of finite groups. Later, this result was a consequence of the

complete characterization of the periodic residually finite FC-groups as the
subgroups of centrally restricted products of finite groups due to Tomkinson

[14]. To date, an analogous characterization has not been obtained for CC-
groups. In this section we extend Gorcakov's result, showing that residually

Cernikov CC-groups are sections of direct products of Cernikov and torsion-

free abelian groups. In Example 2.4 of [4] there is an example of a CC-group

with G/Z(G) non-periodic, and so it is not a section of this type. So, there
are CC-groups that are not in the class S33¡(C U Ao), and this shows that

the hypothesis of residually Cernikov cannot be omitted. On the other hand,

an infinite countable extra special p-group (see p. 49 of [15]) is SS^SF but it

is not residually Cernikov. Thus, the classification that we shall obtain in this

section is not a characterization because a &3*2S(C U ̂ o)-group is not always

residually Cernikov. The next result represents the induction step, and its proof

is very close to the corresponding theorem of [5].

Theorem 4.1. Let G be a CC-group subgroup of the cartesian product

Y[{Fr.i£i}

of an uncountable number of Cernikov groups F,. Then G can be embedded

as a subgroup of a centrally complete product of CC-groups with cardinal strictly
less than \I\. Furthermore, if G is periodic, the embedding can be performed in
a centrally restricted product.

Now we are able to establish our main result of this section.

Theorem 4.2. A residually Cernikov CC-group is in the class <gSñ£>(C U A0).

Furthermore, if G is periodic, G is a €33! C -group.

Proof. The second statement follows immediately from the first. Let us suppose
that G < n{F,: i £ 1}, with |/| < |C|. If / is countable, the result follows
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from Corollary 3.2. Let us suppose that |/| is uncountable. By Theorem 4.1,

there exists a family {Gj: j £ J} of CC-groups with \Gj\ < \I\ for all j,
and such that G < Zr*G¡. We can assume that G¡ = G/K¡ for all j £ J,

and thus, G — H¡K¡ with H¡ normal in G and \Hj\ < \I\. H¡ is residually

Cernikov, and so, by induction Hj e $33>(C\JAo). Then, Lemma 2.1 implies

that Gj £ @39S(C U A0). Let Z = \[Z(Gj) and D = DrGj such that G <
Zr'Gj = ZD. Then D £ @33S(C U A0) and so G £ €32S(C U A0).   G

Corollary 4.3. // G is a CC-group, G/Z(G) £ €33(C U A0). If G is periodic,
then G/Z(G)£&32¡C.

Proof. It is a consequence of Theorem 4.2.   D

Another traditional step in FC-group theory has been embedding the derived

group G' of an FC-group G. Tomkinson [13] has shown that G' £ &33SF ,
for any FC-group G. Using Theorem 3.1 of [4], we can prove an analogous

theorem for CC-groups. The proof is very close to that of Theorem 3.6 of [ 15].

Theorem 4.4. // G is a CC-group, then g' £ S33C.

We finish this section with some arithmetical properties.

Theorem 4.5. If G is an infinite residually Cernikov CC-group, then \G\ =

|G'||Z(G)|.

Proof. Proceeding as in Corollary 3.2, G/N < U{G/NX: 1 ¿ x £ G'} with
N = f]{Nx: 1 # x £ G'}. If x £ N, then [G, x] < N n G' = 1, and so
x 6 Z = Z(G). Then it is easy to see that Z(G/N) = Z/N, and by Lemma

6.3 of [9] |G/Z| < max{N0, |C7'|}. So, |C7| = \G/Z\\Z\ < N0|C'||Z|, and
we have equality because G is infinite. Thus, if G' or Z(G) is infinite, the

result follows. Otherwise, there exists a normal subgroup K of G with G/K a

Cernikov group and KnZnG' = 1. So K = 1 and G is Cernikov. By Theorem

4.35 of [12], G is an FC-group and so is central by finite. Consequently, G
is finite, which is a contradiction, and the proof is complete.   G

The result above is false if the group is not residually as shows any infinite
extra special p-group.

Corollary 4.6. If G isa CC-group with G/Z(G) infinite, then \G\ = \G,\\Z2(G)\.

Proof. It follows from Theorem 4.5.   G

5. Some particular cases of embedding

We show in this section some special cases in which a residually Cernikov

CC-group can be embedded into a direct product of Cernikov and abelian

groups. Most of these results are, in the FC-case, consequences of the char-
acterization of residually finite periodic FC-groups given by Tomkinson [14].

First, we present some results which are adaptations of some Gorcakov theo-

rems (see Gorcakov [7] and Theorems 2.2, 2.3, 2.4 of [15]). Since our proofs

are very similar to those given there, we just state them. We shall denote by
nj(Dr{Hj: i £ I}) the projection from Dr{H¡: i £ 1} to Dr{H¡: i £ J} for a

set of groups {//,: i £ 1} and where / is contained in /.
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Lemma 5.1. Let G be such that G < ¿V{//;: i £ 1}, where the H¡ are groups

such that \H¡\ < k for all i £ I, and where k is a fixed uncountable cardinal.

Then, the index set I can be seen as a union of an ascending chain of subsets

/(Q), a < p, p being the least ordinal of cardinality \I\, such that the following

conditions are satisfied, (a) For each a, J(a) = I(a+i)-I(a) has cardinality strictly

less than k. (b) If J ç I{a) is finite, then UAG) = Uj(Gn Dr{H¡ : i e /(a)}).

Lemma 5.2. Let G be such that G < Dr{H¡ : i £ 1}, where the H¡ are groups

such that \Hi\ < k for all i £ I and where k is an uncountable given cardinal.

Then G' is a direct product of normal subgroups of G which have cardinality

strictly less than k .

As consequences of Lemma 5.1 we can state (see Theorem 2.4 of [15]).

Theorem 5.3. If G £ @39(C U A0), then G/Z(G) £ 39 C.

Corollary 5.4. If G is a residually Cernikov CC-group, then G/Z(G) £ 39 C.
So, if G is a CC-group, G/Zn(G) £ 39C for n>2.

Now we use these previous results to state the more important cases of em-

bedding.

Theorem 5.5. If G is a residually Cernikov CC-group, G' £ 39C.

Proof. We will proceed by induction on |C7|. If G is countable, by Corollary

3.2, G £ 39(CöA0), and since G' is periodic, G' £ 39C. If G is uncount-
able, by Theorem 4.1 we have G < Zr*{G¡: i £ 1} with |/| = \G\ and G, is a
CC-group with |G,| < |G|. Let Z = \~[{Z(Gi): i £ 1} and D = Dr{G¡: i £ 1} .
Then G<ZD. Thus, G' = (GZ)', and since GZ = (GZ n D)Z , we conclude
G' = (GZ n D)'. By Lemma 5.2 (GZ n D)' = Dr{Hj■: j £ J} , where Hj are
normal subgroups of GZ n D and \H¡\ < \G\ for all j £ J. For each j £ J,
since Hj < G', there exists Kj < G such that Hj < K'j and \Kj\ < \G\. By

induction, K'j £ 39 C, and so Hj £ 39 C. Thus, G' £ 39 C, and the proof

is complete.   G

Corollary 5.6. If G isa CC-group, G'Z(G)/Z(G) £39C.

Proof. It is consequence of Theorem 5.5.   G

Theorem 5.7. Let G be a residually Cernikov CC-group. If G', G/G' or Z(G)
are countable, then G £ 39(CuAo). Furthermore, if G is periodic, G £ 39C.

Proof. If G' or Z(G) are countable, proceeding as in Corollary 3.2 and apply-

ing Corollary 5.4, we conclude that G € 39(C U ̂ o) • If G/G' is countable,
we prove the result by induction, as in Theorem 5.5. Using the same nota-

tion, G' = Dr{Hj : j £ J} , where H¡ are normal subgroups of GZ n D and

\Hj\ < \G\ for all j £ J. In fact, Hj < G, Hj are normal subgroups of
(GZ n D)Z — GZ, and so the subgroups Hj are also normal in G. Since

G/G' is a countable group, there exists a countable normal subgroup C of

G such that G = CG'. But C n G' is also countable, and so there exists a

countable subset J0 Q J with CnG' = H < Dr{Hj : j £ Jo}. Clearly, H is
normal in G and, since we are supposing that G is uncountable, \H\ < \G\.

Let K =: Dr{Hj : j £ J - J0} and E = CH. Thus, \E\ < \G\. Then,
EnK = CHnG'nK = (Cn G')H nK = HnK=l and, since G = EK, we
obtain G = ExK. Therefore, (G/G') = (E/E') x (K/K1), and so E/E' and
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K/K' are countable. By induction, E and K are 39(C U ̂ (o)-groups, and

so is G. The second part of the theorem is a consequence of the first, and our
result follows.   G

In this previous theorem, we showed that a residually Cernikov CC-group

with Z(G) countable belongs to the class 39(Cl)Ao). The analogous problem

is still unsolved in the FC-case, that is to say, it is unknown if every periodic

residually finite FC-group with countable center is in the class 39F. The

next result gives a partial answer to this problem.

Theorem 5.8. Let G be a periodic and residually finite FC-group with countable

center Z(G) = Z . Then G is isomorphic to a subgroup of a direct product of

groups which are all finite except for countably many of them, which are Cernikov

central by finite groups.

Proof. We can suppose that G< (G/Z) x (G/N), where G/N is a periodic FC-
group with a countable residual system of finite groups. By Corollary 2.26 of

[15], G/Z £ 39F . Tomkinson (Theorem 2.24 of [15]) also showed that G/N
is a subgroup of a centrally restricted product of a countable number of finite

groups. Proceeding as in Theorem 2.5, we can prove that G/N < Dr {A,: i £

1} x Dr{C„: n > 1} , with A¡ Cernikov abelian groups and Cn Cernikov FC-

groups. So, we have G < Dr{Fj : j £ J} x Dr{A¡ : i £ 1} x Dr{Cn : n > 1} with
Fj finite groups. Let A := Dr{A¡: i £ 1}. Clearly, Gn A < Z. Since Z is
countable, ¿3 = supp(Gn^) is also countable, but Gn(Dr{A¡: i e I -lo}) = I
which implies that G < Dr{Fj-. j £ J} x Dr{A¡: i £ /0} x Dr{C„: n > 1} , and
the result follows,   a
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