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Abstract. We prove that every coalgebra C is a direct sum of coalgebras in

such a way that the summands correspond to the connected components of the

Ext quiver of the simple comodules of C . This result is used to prove that every

pointed Hopf algebra is a crossed product of a group over the indecomposable

component of the identity element.

Introduction

A basic structure theorem for cocommutative coalgebras asserts that any such

coalgebra C is a direct sum of its irreducible components; as a consequence, it

can be shown that any pointed cocommutative Hopf algebra is a skew group ring

of the group G of group-like elements of H over the irreducible component of

the identity element. These results were proved independently by Cartier and

Gabriel and by Kostant in the early 1960's; see [Di, SI]. This paper is concerned

with versions of these results for arbitrary coalgebras and for arbitrary (pointed)

Hopf algebras.
In fact much is already known about the coalgebra problem. In 1975 Ka-

plansky [K] showed that any coalgebra C is (uniquely) a direct sum of inde-

composable ones; moreover when C is cocommutative, the indecomposable

components are irreducible. In 1978 Shudo and Miyamoto [ShM] defined an
equivalence relation on the set of simple subcoalgebras of C and showed that

the equivalence classes correspond to the indecomposable summands. A weaker

version of this equivalence relation was studied recently in [XF].

In this paper we first refine what is known about the indecomposable com-

ponents of C by proving a dual Brauer-type theorem: each component corre-

sponds to a connected component of Tc , the Ext quiver of the simple (right)

comodules of C (Theorem 2.1). In fact Tc can be viewed as a directed graph
whose vertices are the simple subcoalgebras of C ; in this formulation it extends

the equivalence relation of [ShM]. We give a direct proof of these facts, and

so give an alternate proof of the results of [K] and [ShM]. We use only a few
basic coalgebra properties (such as local finiteness) and a theorem of Brauer on

finite-dimensional algebras.
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Secondly, we apply the coalgebra result and prove that for any pointed Hopf

algebra H, there is a normal subgroup N of the group G of group-like elements

such that H is a crossed product of G/N over the indecomposable component

of the identity element of H (Theorem 3.2).
When H is pointed, TH can be described completely if all the skew-primitive

elements are known; see Examples 1.3-1.5.
One motivation for our use of Tc comes from a recent paper of Chin and

Musson [CM], in which they study the duals of certain quantum groups. For

a Noetherian Hopf algebra H, they wish to generalize the definition of the

hyperalgebra H' of H. To do this, they begin with the maximal ideal wo =
kere of H and consider the "clique" of cofinite maximal ideals m which are

equivalent to «?o via a sequence of other such ideals which are "linked" to m

in the sense of non-commutative Noetheran ring theory (see [GW]). This clique
of maximal ideals of H dualizes to a set 3q of simple subcoalgebras of C =
H°, with the links dualizing to a relationship among the simple subcoalgebras

of C. The set 3o determines a subcoalgebra D of C which is the "new"

hyperalgebra.
Here we begin with an arbitrary coalgebra C and define the analog of links

directly on the simple subcoalgebras of C ; this gives us the graph TG as men-

tioned above. The set 3o of [CM] is then the connected component of ke in

rc-
It was also shown in [CM] that if H = cfq(SL(2)), then C = H° is a crossed

product over the "hyperalgebra" D. This crossed product result suggested to
us that a similar result might be true more generally.

1. Simple subcoalgebras and the quiver Vc

We first review a few definitions; we follow [SI] and [M2, Chapter 5]. Let k
be a field. C will denote a k-coalgebra with comultiplication A: C —» C <8>C
and counit e : C -* k. A basic fact is that C is locally finite in the sense that

any finite subset of elements of C lies in a finite-dimensional subcoalgebra D

of C. C is simple if it has no proper subcoalgebras; equivalently the linear

dual C* is a finite-dimensional simple A:-algebra. C is irreducible if it has a

unique simple subcoalgebra.

For any C, the group-like elements in C are the set G(C) — {x £ C\x ^ 0

and Ax = x ® x} ; necessarily e(x) = 1 for jc e G(C). Note that a simple

subcoalgebra D of C is one-dimensional «• D = kx for some x £ G(C). A
coalgebra is pointed if all of its simple subcoalgebras are one-dimensional.

For x ,y £ G(C), the x,y-primitive elements in C are the set Px<y(C) =

{c £ C\Ac = c®jc + y®c}; necessarily e(c) = 0 for c £ Px<y(C). Note that
k(x-y) £ Px,y(C) ; an x,y-primitive element c is non-trivial if c £ k(x-y).

If x = y = 1, the 1, 1-primitives are simply called primitive; otherwise they

are called skew primitive.
We first define the quiver using the simple subcoalgebras of C. Recall from

[S, 9.0] that the wedge of two subspaces D and E of C is defined to be

D h E = hrx(C ® E + D ® C).

Note that if D and E are subcoalgebras, then it is always true that D AE 2

D + E.
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1.1 Definition. Let 3 be the set of simple subcoalgebras of a coalgebra C.

( 1 ) The quiver Yc is given as follows:
(V) the vertices of Yc are the elements of 3 ;
(E) there exists an edge 5i -♦ S2 for S,■ £ 3, <* S2 A Si # Sx + S2.

(2)   C is called link-indecomposable (L.I.) if Tc is connected (as an undi-

rected graph).

We will also say that Sx and S2 are linked if Sx -* S2 or S2 -* Sx, and
that Sx and S2 are connected (or Sx ~ S2) if they are in the same connected

component of Tc.

1.2 Remark. When C is pointed and x, y £ G(C), we will write x -* y if

Sx -* £2 > where £1 = /cx and £2 = ^v. It is known in this case that x -» y <&
there exists a non-trivial x, y-primitive element. This follows by the Taft-
Wilson theorem [M2, 5.4.1]; it is also not difficult to show directly. If C is a

bialgebra and x —> y, then also xz —> yz and zx -» zy, for all z G 67(C).

For, if Ac = c®x+y®c, then A(cz) = AcAz = cz ® xz + yz <g> cz, and so

jcz —> xz. Similarly zx -* zy using zc.

We note that the connection between skew-primitive elements and links was

observed in [CM].

1.3 Example. Let C = U(g), the enveloping algebra of a non-zero Lie algebra

g. Then 3 = {kl} . Since Px X(C) = g ^ 0, Tc is given by a loop:' O
1.4 Example. Assume that k contains a primitive «th root of unity A and let

C = Hni, the Taft algebra of dimension n2 [Tf]. This is a non-commutative,
non-cocommutative Hopf algebra of dimension n2 (the case n = 2 was defined

by Sweedler). As an algebra,

H„2 = k(g, x I gn = 1, x" = 0, xg = Igx)

with coalgebra structure given by g £ G(H) and x £ Px,g(H). Hni is pointed

with G(H) = {1, g, ... , g"~x} . Now 1 -> g since Ax = x®l + g®Jt;
multiplying by gk as in 1.2 we also have gk —> gk+x. Thus TG is

1.5 Example. Consider C = Uq(sl(2)), for q £ k* not a root of 1, as described

by Drinfeld and Jimbo; see [Dr]. That is, as an algebra

H = kÍE, F, K, K~x I KE = q2EK, KF = q~2FK, EF-FE=K~_K_2 \.

Its coalgebra structure is determined by K £ G(H) and E, F £ PK-\ >K(H).
It is known that H is pointed [Ml, R] with G(H) = (K) and that the skew
primitive elements are in the kG(H)-module spanned by 1, E, and F [Ml,

Tl]. Moreover, for all n, EK" and FK" £ PKn-¡ tK,+i(H). Consequently Tc
consists of two connected components:

-► K-* - K~x - K -» ä:3 -► • • •

—► k~2 - 1 -» ä:2 -» a:4 -» • • •.

Thus Uq(sl(2)) is not link-indecomposable.
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We now make the connection to extensions of simple comodules. Let M
be any right C-comodule, with structure map AM '■ M -» M ® C, via m i->

]£ rn(0) ® W(i). M becomes a left C*-module via f • m — ¿^ f(m^)m^o) > f°r

all / € C*, m £ M, and two comodules M, N are isomorphic «■ they are

isomorphic as C*-modules.

Now for each right comodule M there is a unique minimal subcoalgebra
C(M) of C such that A^ : M -» Af ® C(Af), that is, such that M is a C(Af )-
comodule ([S2, p. 326] or [A, p. 129]). If M is finite dimensional, so is C(M),
and if M is a simple comodule, then C(Af) is a simple subcoalgebra of C

([La, p. 354]: observe that by the minimality of C(M), M is a faithful simple
C(M)*-module, and so C(Af)* is a simple algebra). Moreover if M = N are

simple comodules, C(M) = C(N). Conversely if S is a simple subcoalgebra

of C, then S belongs to a simple right C-comodule M, unique up to isomor-
phism (namely, let M be a simple left S*-module). Summarizing, we have the

following well-known result.

1.6 Lemma. There is a one-to-one correspondence between the set J£ of isomor-

phism classes of simple right C-comodules and the set 3 of simple subcoalgebras

ofC.

Now let M, N be two simple right C-comodules. Then Extc(M, N) jí 0 <=>
there exists an exact sequence

0^ N^P^M^O

where P is an indecomposable right C-comodule. The Ext quiver of Jf is the

directed graph which has as vertices the elements of ^ and has an arrow from

M to A^Extc(M, AO^O.
Recall that for a vector space V with dual space V* and U C V, U-1 =

{/ £ V* |/(C) = 0} ; similarly for W c V* we may define IVa- c V .

1.7 Theorem. Tc is isomorphic (as a directed graph) to the Ext quiver of simple

(right) C-comodules.

Proof. Lemma 1.6 gives a bijection between 3 and Jt, and thus between the

vertices of the graphs. To show the arrows correspond, we must show that for

M, N in Jf, Extc(M, N) ¿ 0 «*■ C(M) -» C(N) as in 1.1. To do this, we
first prove it is true when C is finite dimensional.

Consider M and N as left C*-modules as above and let m = annM =

C(M)1- and n — annN = C(M)-L ; m and n are maximal ideals of C*. By

[S, 9.0.0], (D±E-L)1- = DAE, for any subspaces D and E of C. Thus

C(N) A C(M) = (C(N)±C(M)±)± = (nm)1-.

Also C(M) + C(N) = m1- + nL = (m n n)-1. From 1.1, it follows that

C(Af) -> C(yV) ̂nm + nnm.

Now a standard argument for algebras shows that if n and m are maximal

ideals of a finite-dimensional algebra A , and M and TV are simple A/m- and

^/«-modules respectively, then nm ^ «nm o Ext¿(A/, N) ^ 0. Since ^ = C*

is finite dimensional, every ^-module is a C-comodule, and conversely. Thus

C(M) -* C(N) «*• Extc.(Af, N) Í 0 «• Extc(Af, AT) ̂ 0. This proves the
theorem in the finite-dimensional case.
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We now show that in general, we may reduce to the finite-dimensional case.

First assume that Extc(M, N) ^ 0, and let P be an indecomposable C-

comodule with 0—> N —> F —> M —> 0. Since M and N are finite dimensional,
so is P. Thus C(N), C(P), and C(M) all lie in some finite-dimensional

subcoalgebra D of C. Moreover, since Z)-subcomodules are also C-subco-

modules, N and M are simple D-comodules and P is an indecomposable

Z>-comodule. Then ExtD(M, N) ¿ 0, and so C(M) — C(N) in TD since D
is finite dimensional. By 1.1, clearly also C(Af) -> C(N) in Tc-

Conversely assume that C(M) -* C(N) and choose x £ C(N) A C(M),
x i C(N) + C(M). Write Ax £Yíixi®C(M) + YíjC(N)®yj and let D be the
(finite-dimensional) subcoalgebra of C generated by x, all x¡, all y,, C(N),

and C(M). Then Ax € F> ® C(M) + C(N) ® /) and so C(M) -> C(W) in D.
Since D is finite dimensional, the above argument shows Ext0 (M, N) ^ 0.

However, any D-comodule is also a C-comodule, and thus E\tc(M, N) ^

0.   D

We note that the finite-dimensional case of the above argument is essentially

[CM, 1.1, Proposition]. Also the relationship S +T = S AT is mentioned in

[XF], but only used for a criterion for determining when a coalgebra is a direct

sum of irreducible ones.

At this point we compare Tc with the equivalence relation of Shudo and

Miyamoto [ShM]. For S,T £ 3, they define S ~ T & either S = T, or
when S ^ T, there exists a finite chain S = So, Sx, ... , Sn = T, with all

Si £3, such that S¡ ASi+X ¿ Si+X AS,, all i = 0,... ,n- 1.

1.8 Lemma. For S, T £3, S is connected to T in Tc o S ~ T in the sense

of[ShM].

Proof. Using 1.1, it suffices to show that for S ¿ T,  {S A T ^ S + T or
TAS¿S + T}&SAT¿TAS. Equivalent^,

{SAT = S+TandTAS = S+T}&SAT = TAS.

(=>)  is clear.   To show (-*=), choose c£SaT=TaS.   We must show

c £ S + T. By the definition of wedge,

Ac £ (C ® S + T ® C) n (C ® T + S ® C)

= (S + T)®(S+T).

The equality is a standard vector-space argument using S n T = (0).   Since

c - (id ® e)Ac, it follows that c £ S+T.   D

Thus the [ShM] equivalence classes correspond to the connected components

of Tc. However, by looking only at equivalence classes of 3, a lot of in-

formation is lost: the directions of the arrows, as well as the possibility of an

arrow from S to itself, are not considered, nor is the connection to extensions

of comodules.

2. The decomposition theorem for coalgebras

In this section, we prove that any coalgebra can be decomposed as a direct
sum of indecomposable components, each of which corresponds to a connected

component of Tc. Although this result could be obtained by combining work
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of [K], [ShM], and Lemma 1.8, we give instead a fairly short, direct proof, which

follows the outline of the proof for the cocommutative case given in [SI].

We also use the classical theorem of Brauer, which states that a finite-

dimensional algebra A is indecomposable o- the Ext quiver TA of simple

A -modules is connected (see for example, [P, p. 100]).

By a link-indecomposable component (L.I.C.), we mean a subcoalgebra D
which is maximal with respect to TD being connected.

2.1 Theorem. Let C be any coalgebra. Then C = ®a Ca, where the Ca are

the link-indecomposable components of C.

Proof. We proceed by a series of steps as in the cocommutative case [S, 8.0.7].

(1) It is a well-known fact [S,8.0.3], [M,5.6.2] that if C = £a Ca is any sum
of coalgebras Ca , and D is any simple subcoalgebra of C, then D must lie

in one of the Ca .
(2) We claim that if {Ca} is a family of L.I. subcoalgebras of C such that

flQ Ca ¿ 0, then also £a CQ is L.I.
For, p|a CQ must contain a simple subcoalgebra, say D. Thus D ç Ca, for

all a. Let E be any simple subcoalgebra of ¿a Ca . By (1), E ç Cß for some

ß-
Thus both D and E are in Cß , which is L.I. Thus D and E are connected

via a set of simples in Cß ç J2a Ca ■ Similarly any simple F in £Q Ca is

connected to D, and thus to E. Thus Y,a CQ is L.I.
(3) Any L.I. subcoalgebra is contained in a unique L.I. component. For, let

E be the sum of all L.I. subcoalgebras containing the given one; it is maximal

(and unique) by construction, and is L.I. by (2).

(4) We claim that a sum of distinct L.I.C's is direct. For assume that {CQ}

are distinct L.I.C's. If the sum is not direct, Cß n (X^/J Ca) ^ 0 for some

ß. Let D be a simple subcoalgebra in this intersection. Since D ç Y,a?ß C<* >

it follows by (1) that D c Cy for some y ¿ ß. Thus 0 ¿ D ç CßnC7.
Applying (2), Cß + Cy is L.I. By assumption each Ca is maximal L.I., and thus

Cß = Cß + Cy, a contradiction. This proves the claim.

(5) By (3) and (4), it remains only to show that the sum of the distinct L.I.C's
is all of C. By local finiteness, any c £ C lies in a finite-dimensional subcoal-

gebra; thus we may assume that C is finite dimensional. Then A = C* is a

finite-dimensional algebra, and so A = ®, A¡ where the A¡ are indecompos-

able algebras. Thus C = A* = ®( A*. We are now done by Brauer's theorem,

since TA. = TA> as noted in Theorem 1.7.   G

2.2 Corollary.  C ¿s indecomposable o Tc is connected.

Proof.  (=*■) If Tc is not connected, then C is not indecomposable by 2.1.
(•*=) Assume Tc is connected, but that C = D © E, for D,E proper

subcoalgebras of C. By assumption Tc is connected; also by ( 1 ) in the proof

of 2.1, every simple subcoalgebra of C lies in D or in E.

Thus we can find simple subcoalgebras S ç D and T c E which are linked;
say S — T. Let m = S1- and n = Fx in C*. Since S -* T, it follows by [SI,
9.0.0], as in 1.7, that mn^mnn, since (mn)1- = S AT ¿ S+ T = (mnn)L .

Now C* S D*®E* s C'/D^-qC/E1- . Under this isomorphism, since m D
D1, we may find an ideal / of C*/Dx such that m = / © C*/E± . Similarly,
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since n 2 E1-, there is some ideal / of C*/E± such that n = C*/D± © /. It

follows that mn = m n n , a contradiction. Thus C is indecomposable.   D

2.3 Remark. If C is cocommutative and is link-indecomposable, then C is

irreducible. For, assume C is not irreducible. Then C contains two simple

subcoalgebras with Sx -* S2. If x £ A-1 (C ® Sx + S2 ® C), x £ Si + S2,
consider the subcoalgebra Cx generated by x, Sx, and S2. Setting m = S^

and n - S2 ,we have (again as in 1.7) that mnj^mnn. But C\ is a finite-
dimensional commutative algebra, so is a finite direct sum of local rings. This
is a contradiction. Thus we recover the classical result.

3. Pointed Hopf algebras

In this section we prove the crossed product decomposition mentioned in the

introduction. We first need a known lemma.

3.1 Lemma. (1) If C and D are pointed coalgebras, then C®D is pointed
and G(C ® D) = 67(C) ® 67(D).

(2) If f: C -» D is a surjection of coalgebras and C is pointed, then D is

pointed and 67(D) = f(G(C)).

Proof. (1) is [M2, 5.1.10] and (2) is [M2, 5.3.5].   D

In fact if C and D are pointed indecomposable, then C ® D is also inde-
composable. For, if x -* y in C and z £ 67(D), then x® z -> y ® z as in 1.2,

using tensor products. Similarly, if z -> w in D, then y ® z —> y <8>w , and
thus x ® z -> y ® w , for all x, y e 67(C) and z, w e G(D). Thus 67(C ® D)
is connected and so C ® D is indecomposable by 2.2. It is false, however,
that images of pointed indecomposable Hopf algebras are indecomposable: for,
kZ2 = kl + kg is an image of H4, which is indecomposable by 1.4 and 2.2.

We let S denote the antipode of H. If x e G(H), then Sx = x~x and
thus G(H) is actually a group.

3.2 Theorem. Let H be a pointed Hopf algebra, and set G = G(H). For each

x £ G, let H(X) denote the indecomposable component containing x. Then:

(1) HiX)H(y) ç H(Xy) and SH{x) ç H<x-\). In particular H(X) is a Hopf
algebra.

(2) G acts on H(X) by x-h = xhx~x, for all x £ G, h£ H¡\).
(3) The set N = G(H^) is a normal subgroup of 67.
(4) H = H(X<i#ak(G/N), a crossed product of //(1) with the quotient group

G/N, with cocycle 0: G/N x G/N -» N.

Proof. (1) The argument generalizes those in [SI, §8.1] and [M2, 5.6.4]. If
x, y £ 67, then Lemma 3.1 implies that //(x) ® //(y) is pointed indecomposable.

Also multiplication H(X)®H<y) -* H(X)Hiy) is a coalgebra surjection, and thus by

3.1 H(x)H{y) is pointed with G(H(x)H{y)) = {ztu|z € G(H(x)), w € G(Hiy])}.
Moreover a similar argument to the one after 3.1 shows that G(H{x)H(y)) is
connected. Thus HiX)Hiy) is link-indecomposable; since it contains xy, it must

be contained in Hixy). It follows that (//(i))2 ç//{1) and so H^ is a bialgebra.

It remains to show that SHM ç Hix-\). Now 5 is bijective since H is pointed

[M2, 5.2.11] and thus S: Hcop —> H is a coalgebra isomorphism; here Hcop is
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H with the opposite coalgebra structure. Thus H^ indecomposable implies

that S(H™f) is indecomposable. Since x~x = Sx £ S(Hc{°f), it follows that

S(H?°?) is the indecomposable component containing x_1. Thus SH(X) =

H{x-i}.
(2) For each x e 67, the map tj>x: H —> H given by h >->■ xh is a coal-

gebra automorphism of H. Thus (f>x(H^) = xH^ is the indecomposable

component of H containing x, and so xH¡\) — H^ . Similarly H(X) = H(X)X.

Consequently x//(1)X_1 = //(i).

(3) Now N - {x £ G(H)\x is connected to 1} since H^ is the component

containing 1. N is a subgroup since H(X) is a Hopf algebra; however this is easy

to see directly. For, x —► y implies that xz -* yz and zx -> zy as in Remark
1.2. Thus if x, y e N, so that 1 ~ x and 1 ~ y, then xy~x ~ xy~xy = x ~ 1
and so xy_1 G N. Thus N is a subgroup. Similarly if 1 ~ x and z £ G, then
1 ~ zxz~x and so N is normal.

(4) The crossed product decomposition now follows from (2), (3), and Theo-

rem 2.1. For, let F be a set of distinct coset representatives of N in 67. Then

H - ®xeTH(x) = ®x-eTHwX- Write xy = o(x,y)xy, where cr(x, y) e N.

Then if h, k £ H(X),

(hx)(ky) = hxkx~xxy = h(x • k)o(x, y)xy.

Thus H s H[X)#ak(G/N), a crossed product.   D

3.3 Example. We return to Uq(sl(2)), which we saw in 1.5 was not indecom-

posable. In this case the indecomposable component of 1 is

H(X) = k(EK,FK,K2,K-2)

with the same relations as before. Here N = (K2) and so G/N = (K) = Z2,

where K is the coset KN. The cocycle a: G/N x G/N —► N is given by

o(K, K) = K2 and o(K, T) = o(l, K) = o(l, T) = 1. Then

C,(5/(2)) S H(x)#ak(G/N) S H{X)#akZ2.

We note that if we set Ex = EK, Fx = K~XF, and Kx = K2, then H(x) =

k(Ex, Fx, Kx, Kx~x) is the "new version" of Uq(sl(2)) which is now used in

[L], [DK], [Tk]. Lusztig remarks in [L] that the new version is used " to avoid

certain irrelevant fourth roots of 1". Theorem 3.2 suggests that //(]) is the more

fundamental object since its group-like elements are connected.

A similar decomposition holds for Uq(sl(n)), as its skew primitives are also
spanned over kG(H) by the E¡ and F, (M. Takeuchi, private communication,

following [Tk]).

3.4 Remark. The H(X) in Uq(sl(2)) above was also used in [MS] in determining

the possible actions of Uq(sl(2)) on the polynomial ring C[x]. In that paper,

it seemed easier to first deal with 1, K2 -derivations and then to consider the

action of K, rather than to begin with K~x, K derivations. More generally,

in considering actions of a pointed Hopf algebra H on a ring A , Theorem 3.2
suggests that one could first consider the indecomposable case //(i), and then

use known results about group crossed products to deal with the action of G/N

on A.
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Added in Proof

J. A. Green shows in Locally finite representations, J. Algebra 41 (1976),
137-171, (1.6b), that the indecomposable components of a coalgebra are the

"blocks" with respect to an equivalence relation on the simple comodules using

their injective covers. Although "adjacency" of the simple comodules may be

different than in [ShM] (and in this paper), the equivalence classes are the same.
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