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DUAL LIE ELEMENTS AND A DERIVATION
FOR THE COFREE COASSOCLAITVE COALGEBRA

GARY GRIFFING

(Communicated by Lance W. Small)

Abstract. We construct a derivation D in the Hopf algebra TcV , the cofree

coassociative coalgebra on a vector space V. We then define the subspace

of TcV consisting of dual Lie elements, which is analogous to the subspace

of the Hopf algebra TV, the free associative algebra on V, consisting of

Lie elements. Thereafter, we formulate a dual Dynkin-Specht-Wever theorem.

Using our map D, we then give very short proofs of both the dual Dynkin-

Specht-Wever and dual Friedrichs' theorems, each of which characterizes the

space of dual Lie elements in TcV at characteristic 0.

1. Introduction and background

Let F be a vector space over a field F, and let TcV denote the cofree

coassociative coalgebra on V, with comultiplication A and canonical linear

projection n: TcV -► V. We recall that TcV is a Hopf algebra whose elements

may be expressed [B-L, p. 17; B, p. 278] as certain formal infinite sums / =

¿Zo<nf" > where /" e V®n (the degree n component of both TV and shV,

the tensor and shuffle algebras on V, respectively). We also let shV denote

the completion of s h V, that is, the vector space of all formal infinite sums

/ = J2o<n f" if" e V®") equipped with extended shuffle multiplication. Thus,

if we denote shuffle multiplication in shV by •, then shV has multiplication
(also denoted •) defined by

0<« i+j=n

As an algebra, TcV CshV is a subalgebra [B, p. 284].

We first construct a specific derivation D: shV —► shV, under which the

subalgebra TcV is invariant (Proposition 1). The map D will have the fol-

lowing effect on shV and hence on TcV : For f £ shV, Df = J20<n nf" ;
thus, D can be considered a degree derivation. Next, we construct a useful map

p: shV —► shV and show (Proposition 4) that the subalgebra TcV is invariant

under p. The map p gets used in an essential way in the proofs of our main
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results, Theorem 6 and Theorem 8, of section 3. We comment that Lemma 3

shows that our map p„ , which appears in the construction of the map p, turns

out to be equivalent to the map denoted by a in [R, p. 217]. (The algebra f/

of [R, p. 210] is isomorphic as an algebra to shV (over a commutative base

ring), via a(ix • • • i„) >-> v¡t ® • • • <g> vin.) Moreover, the respective contexts of

these maps appear to be dual to one another.

Recall that the space of Lie elements is defined as the subalgebra of 2?(TV)
generated by i(V), where S?(TV) is the Lie algebra associated to the associa-

tive algebra TV and i: V -* TV is the canonical linear injection [J, p. 168].

(We mention that J¿?(TV) is also frequently denoted by TV~.) In section 3,

we define the space of dual Lie elements of TcV by dual analogy with the
space of Lie elements of TV . Next, for F of characteristic 0, we formulate a

dual version of the classical Dynkin-Specht-Wever theorem (Theorem 6) using

the map D. In Theorem 8 we apply D and p to give extremely short proofs

of both the dual Dynkin-Specht-Wever and the dual Friedrichs' theorems. (An
earlier and longer proof of the dual Friedrichs' theorem is given in [G, Theo-

rem 11]). These theorems characterize the dual Lie elements (of TcV) in a

manner analogous to the characterization of the Lie elements (of TV) by the

well-known Friedrichs' and Dynkin-Specht-Wever theorems, as given in [R, p.

214].
Since the Friedrichs' and Dynkin-Specht-Wever theorems can be used to

prove the Campbell-Baker-Hausdorff formula [J, p. 172], one can wonder about

a possible "dual C-B-H formula".
We will now proceed to recall the coalgebra structure of TcV. Given / e

shV, we say that a finite subset

{gs,hs £shV:s£S}

represents (or forms a set of representing elements for) / if whenever 0 < n ,

i + j = « , we have that /" = £í€5 g' ® h{ , as an element V®' ® V®¡ ç V®i+i.

The coalgebra TcV consists of those f £ shV for which there exists a cor-

responding finite subset of representing elements. Such elements / are called

representative; one also shows that the representing elements are themselves rep-

resentative [B-L, p. 16]. The coalgebra structure maps are now easy to describe.

Let / = Ylo<n f" £TcV; then the comultiplication A: TcV -> TcV ® TcV,
the counit e: TcV -» F, and canonical projection n: TcV —> V are given

respectively by

A(/) = 5>®A,,    e(f) = f>,    and   n(f) = fx.
ses

Thus, for /£ TcV, we have (using the notation in [S]) A(/) = £)(/) fi\)® fi2).

By [B, p. 277], for 1 < n we have /" = ((g)" ä)A„_,(/) , that is,

(l) f" = Y,f(\)®---®f(ny
(/)

We now recall from [B-L, p. 20] a useful criterion for determining which / 6

shV are representative. Let {vk: k £ K} be a basis of V and X¡ £ V* with
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Xj(vk) = ôjk , for j, k £ K. Define a left truncated translation operator

Lj:shV -+sítV,        £ f" " Y,(XJ ® (®" l))/"+1.    where 1 = Id.
0<n 0<n

There is an analogous right truncated translation operator Rj, the effect of

which is to replace X¡ ® ((g)" 1) by ((g)" 1) ® X¡ in the above formula. Using

Lj rather than R¡ in Corollary 6 of [B-L], we have the following characteri-

zation, corresponding to the usual characterization of a representative function

on a semigroup G as an element of Map(G, F) whose space of left (or right)

translates is finite dimensional.

Lemma 0. Let f £ shV be given. Then f £TcV if and only if

span{L;i • • • Ljmf: j,> £ K, i = 1, ... , m, 0 < m}

is finite dimensional.

Let Lf denote the above span, and define Rf similarly. Then by Corollary

5 of [B-L] applied to TcV (= F[x]^,), we have that the finite-dimensional

subcoalgebra generated by f £ TcV is LRf = RLf.

2. The derivation D and the map p

We will now introduce and examine our derivation D and a closely related

map p. Thereafter, in Proposition 1 we will show that TcV is invariant under

D, and in Proposition 4 that TcV is invariant under p; thus, we will show

that if / e TcV, then Df £ TcV and pf £ TcV.
We mention that one can show that D is the convolution product p * 1 of

p and 1, the identity, in Hom(TcV, TcV). That is, by expanding and using

(2), one has D = (»)(p ® 1)A. This latter fact is not necessary for this work,

but is interesting nevertheless.
Define a linear map

D:shV^sh~V,        $^"~£"-f-
0<n 0<n

Proposition 1. The linear map D is a derivation of the algebra shV, and the
subalgebra TcV is invariant under D. Moreover, D is a coderivation (AD =

(l®/) + Z>®l)A) of TcV.

Proof. We first show the derivation property of D. Let / = ¿~^0<n f" and

8 = Eo<„ S" • We find that D(f . g) = E0<„ « £,+;=„ f • 8j ', while on the
other hand,

0<í 0<; 0<; 0</

0<n i+j=n 0<n i+j=n

0<n i+j=n 0<n    i+j=n

We now show that TcV is invariant under D. Let f £ TcV and A(/) =

Sigs gs ® hs so that /" = ]£fes ¿?j ® ^í > whenever i + j = n . Therefore, for
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each 0 < n and i + j = n,

(Df)n = nf" = ¿2(DgÍ ® hi + gi® Dh{)
S€S

= Y,((D8sy®hi + gi®(Dhsy).
ses

This shows that {gs, Dgs, hs, Dhs : s £ S} forms a set of representing elements

for Df; therefore, Df £ TcV and A(Df) = £J€5(Z>& ® hs + gs ® Dhs).   D

Recall that shV  (= TV as a vector space) is the irreducible component of

1 in TcV and can be identified as a Hopf algebra with the sub Hopf algebra of

TcV consisting of those formal sums which are finitely non-zero [B, p. 282].

For each 0 < n, we inductively define a linear map pn: shV -> shV, where

t = twist map and A = AsnV . Set po = 0, px = 1, and for 2 < n

^ = ((g)''-2l®(l-T)A)^B_1.

Thus, we have a linear map

p:s'hV-+shV, "£fn„Y,Pnfn-
0<« 0<«

We will now show that p maps TcV to TcV. In order to do this, we need

the following two technical lemmas. For 1 < j and vx, ... , v}■ £ V, we will

write vx ■■ ■ Vj to mean the homogeneous tensor vx ® • • • ® Vj .

Lemma 2. If2<n,l<m<n-l, and vx---vm£ V®m, then

Pn(V\---Vm) = 0.

Proof. It suffices to assume that for any n, m = n - 1 . Now use induction on

n , the base step being clear since

(1 -x)A(v) = (l-x)(l®v + v®l) = 0,

for all v £ V.   D

We remark that if p„ were defined on the left (rather than the right) as

p„ = ((1 - t)A ® ((g)"-2 l))p„-X, the following lemma would show that p„ is

identical to the map denoted by a in [R, p. 217] (see comment in section 1).

Lemma 3. If 2 < n and vx---v„ e Vm , then

Pn(vX ■■■Vn)=V\ ®pn-\(V2 • • • Vn) - Vn ® p„-X(VX • ■ ■ Vn-X).

Proof. Using induction on n , we have that p„ = (1 ® />„-i)(l - t)A. Lemma

2 now implies

Pn(V\ ■■■V„) = (l ®pn-\)(vx ®V2---V„-V2---V„®VX

+ vx •••v„_i ®vn -vn ®vx ■■■vn-X +Y,Lt®Lt')

= VX® Pn-\(V2 ■■■Vn)-Vn® Pn-l(Vl ■ ■•Vn-X),

where Lt and Lt' denote elements of degree less than n - 1.   G
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Later in Proposition 7, we will require the following identity, which is given

in Lemma 1.2 of [R, p. 212] (see comment in section 1). This identity can be

easily proved by induction. For 1 < n and vx,... , vn £ V,

n

(2) n(vx • • • t>„) = £ Pi(vi ■ ■ ■ v¡) • (vi+l ' • • vn).

¡=1

For the following proposition, we use the basis of V and notation chosen in

the previous section; thus, let Xj £ V*  (j £ K) he defined as above.

Proposition 4. If f £ TcV, then pf £ TcV.

Proof. Let f £ TcV. Using the notation of section 1, we will show that L(pf)

is finite dimensional. Lemma 0 will then imply that pf £ TcV. Suppose that

A(/) = Y,ses gs®hs. By the proof of Theorem 3 in [B-L], we may take the gs

and the hs (s £ S) as spanning sets for Rf and Lf respectively. In order to

invoke Lemma 0 we consider the following calculation, where 0 < n. By (1)

and Lemma 3, we find

(^®((g)',i))/>„+i/B+1 = (^®((8)"i))/'B+iE^1i)®---®y(!,+i)
(/)

= (^®(®"i))E{yi1i)®^^2)®---®^+i))

(/)

-f(n+l)®Pn(f(\) »••■»/(!,))}

= Y,^Sl)Pnm-Xj(hXs)Pn(g^)}.
ses

Therefore, summing on n gives

Lj(pf)=Yl(XJ®((2)»l))pn+xf"+x
0<n

=  T,T/^Á^)Pn(h^)-Xj(hXsj)pn(gn}
0<nseS

= EJq*E^W)-&£/>"(&") I
seS  (      0<n 0<n J

=  J2((*sP(hs) - ßsP(gs)) ,
ses

where as and/J^ are the scalars Xj(gx) and Xj(hx) respectively. We now have

that

{p(hs), P(gs)}ses

is a finite spaning set for Lj(pf). We have just shown that for any j £ K,

Lj(pf) C sr,an{p(Rf),p(Lf)}. Hence, by Corollary 5 of [B-L], L(pf) ç
span{p(LRf)} , which is finite dimensional. By Lemma 0 we have that pf £

TcV ; that is, p maps TcV to TcV.   o

The maps D and p were each defined with domain and codomain s h V.
In the previous two propositions it was shown that D and p, each with their

domains restricted to  TcV, have codomains TcV, respectively.   With this
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in mind and for ease in notation, we will continue to denote by D and p

the corresponding maps, each of which now have their domain and codomain

restricted to TcV.

3. Applications to dual Lie elements

In this section, F has characteristic 0.

As was mentioned in the introduction, if i: V -* TV is the canonical linear

injection, then the space of Lie elements is the smallest subalgebra of Sf(TV)

containing i(V). That is, the space of Lie elements equals the subalgebra of

2?(TV) generated by i(V). This subalgebra can also be described as the space

spanned by all iterated brackets of elements of V. To define dual Lie elements,

we must first recall the notation of a Lie coalgebra. A Lie coalgebra (K, Ô) is

a vector space K and a linear map ô : K —► K ® K, satisfying identities which

are arrows-reversed versions of the defining identities for a Lie algebra [G, p.

447; M, p. 4]. The cofree Lie coalgebra (on V), that is, the cofree object in the
category of Lie coalgebras, is denoted by LcV and satisfies the usual universal

mapping property. (This u.m.p. is obtained by reversing arrows in the u.m.p.

satisfied by the free Lie algebra on V.) If (C, A) is a coassociative coalgebra,

2fc(C) will denote the associated Lie coalgebra whose underlying vector space is

C and whose comultiplication is ( 1 - t)A . A covered Lie coalgebra is a vector

space K together with a linear map Ö : K —» K®K for which there exists a coas-

sociative, counital, coalgebra (C, A, e) and a surjective map to: Sfc(C) —» K

such that (to ® to)(I - x)A = ôto. All covered Lie coalgebras are Lie coalge-

bras, but not all Lie coalgebras are covered [M, p. 9]. Thus, the category of

covered Lie coalgebras is strictly smaller than the category of Lie coalgebras. In

fact, in the proposition in [M, p. 41] it is shown that a Lie coalgebra is cov-

ered if and only if it is locally finite, that is, if and only if each element lies
in a finite-dimensional Lie subcoalgebra. Moreover, it is precisely the covered
Lie coalgebras in which the dual P-B-W theorem holds [A, B, Ml]. Given a Lie
coalgebra K, a subspace I ç K is a Lie coideal if ô(I) ç K®I+ I®K. (There
exists a well-known duality between the coideals of a coalgebra C and the sub-

algebras of the dual algebra C* ; thus, quotient coalgebras of C correspond

to subalgebras of C* ; see [S, p. 19] for coassociative coalgebras, and essen-

tially the same argument works for Lie coalgebras.) The category of covered

Lie coalgebras also has a cofree object on V. This cofree object is denoted by

Sfc(TcV)/J, where J is the largest Lie coideal (sum of all such) of 2fc(TcV)

contained in ker n. Thus, we say that J is the Lie coideal cogenerated by

kern. The quotient Sfc(TcV)/J corresponds to the subalgebra of Sf(TV)

generated by t(V). Thus, the Lie coideal / of 5fc(TcV) corresponds to the

subalgebra of 5f(TV) consisting of Lie elements.

Therefore, elements dual to the Lie elements would be elements of /. This

is the motivation for the following definition.

Definition. A dual Lie element is any element of 3 . Thus, f £ TcV is a dual

Lie element if / is a member of the largest Lie coideal contained in the kernel

of the canonical linear projection n: TcV -> V, that is, if f is a member of

the Lie coideal cogenerated by ker n .

However, as we will see in Theorem 8 in contrast to the space of Lie elements,

the space of dual Lie elements contains the (Lie coideal) base field F .
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Recall that for any counital coalgebra C, we write C = kere ; in particular,

TcV is contained in all formal infinite sums with degree 0-component equaling

0, and TV = 0,<„ V®" . We also have the following result, which is stated in

[M, p. 8] and proved in both [B, Lemma 5.1] in [M2, p. 138].

_2 _2 _2
Lemma 5. If B is any bialgebra, then (l-x)A(B ) ç. B ®B + B®B . That is,

_2
regarding B as a coalgebra, B   is a Lie coideal in the associated Lie coalgebra

Sfc(B).

In [G, p. 458] we gave the dual Friedrichs' theorem characterizing dual Lie el-
ements. Before we recall this theorem, we will recall two versions of Friedrichs'
theorem, each of which characterizes Lie elements. The second version will
lend itself to dualization. Let 6: TV —> TV ® TV be the linear map extending

v ^ I ®v + v ®l, v £ V. Also for each 1 < n , let {u,•: /' £ Bn} be a basis

of V®n, constructed from a basis of V, and {u¡: i £\JBn} he the resulting

basis of TV. Let ( , ) : TV x TV —► F be the (bilinear) pairing defined by
(Ui ,Uj) = on, for all i,jeU5n-

Friedrichs' Theorem ([J. p. 170]). An element a £ TV is a Lie element if and

only ifda— 1 ® a + a ® 1 ; or equivalently, an element wn £ W®n (1 < n) is a

Lie element if and only if 6wn = 1 ® w„ + wn ® 1.

Friedrichs' Theorem ([R, p. 214]). An element a £ TV is a Lie element if

and only if (a, b) = 0, for all b £ TV • TV. Equivalently, an element w„ £
V®n(l<n) isa Lie element if and only if (w„ , b„) = 0, for all b„ £ V®'»V®J,
whenever i + j = n, 1 < /', j.

As mentioned above, this second version of Friedrichs' theorem gives rise to

the following dual formulation.

Dual Friedrichs' Theorem ([G, p. 458]). An element f £ TcV, with fx = 0
(that is, n(f) = 0), is a dual Lie element if and only if for each 2 < n, f"£

TV•TV.

Now we recall the Dynkin-Specht-Wever theorem, and then formulate and

prove the "dual Dynkin-Specht-Wever theorem". For 1 < n , let [vx, ... , v„]£

V®" denote the standard n-fold bracket defined inductively by [v] = v , and

for 2 < n

[vx, ... ,v„] = vx®[v2, ... ,v„]-[v2, ... ,v„]®vx,

for all v, vx, ... ,v„ £ V. As mentioned above, these elements span the space

of Lie elements. One defines, on all homogeneous elements of degree 1 < n , a

linear map

yn:V®"^V®",        vx---vn~[vx,...,v„],

and therefore a linear map

y;TV-+TV, £^^£y„u;„,

where wn £ V®" . We can now state the following.
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Theorem (Dynkin-Specht-Wever [J, p. 169]). An element a £ TV is a Lie ele-

ment if and only if y a — Da; or equivalently, an element wn £ V®n (1 < n) is

a Lie element if and only if ynw„ = nwn .

We introduce the linear map (which will turn out to be analogous to y)

Y: TcV -» TcV,        f„(D-p)fi

As far as we know, the following theorem has not previously appeared in the

literature and will be proved in Theorem 8.

Theorem 6 (Dual Dynkin-Specht-Wever). Let f £ TcV. Then f is a dual Lie
element if and only if Yf = Df.

We remark that the condition Yf = Df in Theorem 6 is equivalent to
requiring that pf = 0. We choose to use the above form since it resembles the

analogous condition of the Dynkin-Specht-Wever theorem.

Just as the Dynkin map, y, has its image in (actually, equal to) the space of

Lie elements, the next proposition, together with the implication (iii) implies

(i) of Theorem 8 below, shows that our map, Y, has its image in the space of

dual Lie elements. Equivalently, Theorem 8 and the above remark show that

the space of dual Lie elements is contained in (actually, equal to) the kernel of

P-

Proposition 7. // / £ TcV, then Yf £ TcV . TcV.

Proof Let / = J2o<n f" e TcV ■ Then usinS (2) we find that

r/ = (fl-P)/ = B»f-/'/) = EE   E   PtJm'Jm-
0<n 0<n (f) i+j=n;l<j

Since po = 0, this is an element of TcV • TcV.   D

Our map Y will now be used in order to give new and elementary proofs

of both the dual Friedrichs' and dual Dynkin-Specht-Wever theorems. We note
that in the following, the dual Friedrichs' theorem is the equivalence of (i) with
(iii) and the dual Dynkin-Specht-Wever theorem is the equivalence of (i) with

(ii).

Theorem 8. For f £ TcV, the following are equivalent:

(i)   f £ J  (f is a dual Lie element).

(ii)   Yf=_Df. _
(iii)   / £ TcV • TcV © F.

Proof, (i) implies (ii): To do this, we will show that pf = 0 for all f £ J.
By the u.m.p. of the cofree Lie coalgebra LcV, let ñ he the canonical Lie

coalgebra map 5fc(TcV) —> LcV induced by n , and let / £ J . An easy check

shows that / = ker tt . Since nf — 0, we have, by formula 10 and Lemma 10
of [G], for all 2 < n ,

O = ((g)"7t)(0"-2l®(l-T)A)--.(l®(l-T)A)(l-r)A(/)

= «gT^X® "-21 ® (1 - t)A) • • • (1 ® (1 - t)A)(1 - T)A(/")

= PnP.

Since / ç kern, fx — 0, and we have pf = 0 ; thus, (ii) holds.
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(ii) implies (iii): Using (ii) and Proposition 7, Df £ TcV • TcV ; therefore,

(iii) holds.
(iii) implies (i): By Lemma 5, TcV • TcV is a Lie coideal. Since every

element of this Lie coideal has degree 1-component equaling 0, this Lie coideal

is contained in kern ; hence, so is the Lie coideal TcV»TcV®F . This last Lie

coideal is therefore contained in J (being the largest such). Thus, (i) holds.   D
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