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Abstract. The boundary integral equation method in terms of real variables

is applied to solve the interior and exterior Dirichlet and Neumann problems

of plane elasticity. In the exterior case, a special far-field pattern for the dis-

placements is considered, without which the classical scheme fails to work. The

connection between the results obtained by means of this technique and those

of the direct method is indicated.

1. Introduction

Boundary value problems for the equations of plane elasticity have been ex-

tensively investigated via integral equations in the complex domain (see, for

example, [1]). While the complex variable technique is very powerful and ele-

gant, it has the drawback that its essential ingredients must be constructed in full

for every individual situation, which often turns out to be an onerous task. By

contrast, the real variable alternative does not suffer from this inconvenience, its

generality allowing it to be used successfully for solving a large class of linear

elliptic boundary value problems, with only modifications of detail from one

case to another.

In spite of its practical relevance, plane elasticity has largely been neglected

in the literature devoted to the real boundary integral equation method, where
attention is mainly focused on the three-dimensional theory. This is clearly an

injustice, since it is plane elasticity that proves to be mathematically the more

challenging of the two, owing to the fact that its fundamental solutions do not

decay to zero at infinity, as required in the general scheme.

An attempt at a systematic solution of the fundamental boundary value prob-

lems for the equations of plane strain in terms of real variables can be found
in [2]. The far-field pattern considered there for the solution u of the exterior

problems is

(1) u = 0(1),     || = <9(JR-2)   as   *->oo.

Under this assumption, the solution of the exterior Neumann problem is unique
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only up to a constant vector. Existence theorems, though, are not proved ex-

plicitly, being passed over with the mention that they are handled exactly as in

the three-dimensional case. But the corresponding proofs for three-dimensional

elasticity do not carry over automatically to the plane theory: in the latter, the

single-layer potential V is 0(lnR) as R -» oo and needs additional restric-

tions on its density, which may not be readily available. A case in point is

the proof that the null spaces of the integral operators for the interior Neu-
mann and exterior Dirichlet problems are three-dimensional. The version in
[2, Chapter VI, §3] is ultimately based on the assumption that if Vq> = 0 on

the boundary, then q> = 0, which is true in the three-dimensional theory but

not always so in plane elasticity [3]. The new proof given in [4] in three di-

mensions makes use of the regularity of V at infinity; as mentioned above, this

property does not hold in the plane case. Even the proof indicated in [5, §2.7]

for the equations of bending of plates with transverse shear deformation can-

not be adapted to plane strain, since, although it operates with the double-layer

potential, which remains regular at infinity in two dimensions, it also relies es-

sentially on the uniqueness of the solution of the exterior Neumann problem,

unavailable under the conditions (1).

Other notable real variable angles of approach in plane elasticity can be found
in [6], where the boundary value problems are solved in terms of biharmonic

scalar functions, and in [7], where the integral equations are derived from the

Somigliana formula. The equation for the Dirichlet problem in [7], however,

is of the first kind and does not always have a unique solution [3]. A different

formulation of this procedure has now been rigorously investigated in [8].
The aim of this paper is to give—for the first time, as far as the author is

aware—a full and correct account of the real boundary integral equation method

in application to plane strain. We propose a far-field pattern which guarantees

the uniqueness of the solution of the exterior Neumann problem, indicate the
physical significance of this pattern, and show how the solutions obtained by

means of this technique generate those produced by the direct method.

The proofs are omitted where they follow the classical scheme, explicit men-

tion being made only of those details that are specific to the case of plane

elasticity.
In this form of presentation, the method can easily be adapted to other two-

dimensional elliptic systems in continuum mechanics.

2. Preliminaries

In what follows Greek and Latin subscripts take the values 1, 2 and 1, 2,3,

respectively, the convention of summation over repeated indices is understood,

Jinx« is the space of (m x n)-matrices, E„ is the identity element in ¿#nxn,

a superscript T indicates matrix transposition, and (...) ,a= d(...)/dxa. If

I is a space of scalar functions and v a matrix, v e X means that every

component of v belongs to X. Also, if J2? is an operator defined on functions

6 € J?px\ and such that S?8 € Jfr*\, and if 0 e Jfpxq , then J?0 e ^x? is

the matrix with columns {&&)& = &(QM).

Let S be a domain in E2 bounded by a closed C2 -curve dS and occupied

by a homogeneous and isotropic material with Lamé constants A and ß. The

state of plane strain is characterized by a displacement field u = (u\, «2, u^)T
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of the form

(2) ua = ua(xx, x2),     «3 = 0,

where x = (x\, X2) is a generic point in K2. In the absence of body forces, (2)
gives rise to the system of equilibrium equations

(3) A(dx)u = 0,

in which now u = (u\, u2)T, A(dx) = A(d/dX\, d/8x2),

A& , Í2)
¡iA + (l + H)c:2      {X + /i)iii2

and A = if + {2.
We also consider the boundary stress operator T(dx) = T(8¡dx\, 8/8x2)

defined by

T(£   £ ) = (^ + ll¿)v^x + ßVl^2        ßV2^x + lv^2      \

V A1/2Í1 + 0I/1Í2 /ÍVlíl + (A + 2jU)i^2 /   '

where v = (v\, v2)J is the unit outward normal to dS.
The internal energy density is given by

E(U, U) = \[k(U\t\ +«2,2)2 + 2/i(«2jl +«2,2) + f«(Wl,2 + "2, l)2].

We assume that

X + ß > 0,     // > 0,

in which case it is easy to see that the operator A is elliptic and E is a positive

quadratic form. It can be shown that E(u, u) = 0 if and only if

(4) u = (ci+ c0x2, c2 - c0xi )T,

where cq and ca are arbitrary constants. This is the most general rigid dis-

placement compatible with (2). We take {F^} to be a basis for the space of

such rigid displacements, where /r(,) are the columns of the matrix

/1    0      x2

\0   1    -xi

Clearly, AF = 0 in K2, TF = 0 on 95, and a generic vector of the form (4)

can be written as Fk, where k e »#3x1 is constant and arbitrary.

Let S+ be the bounded domain enclosed by 8S and S~ = E2 \ (S+ U dS).
Direct verification shows that

(5) I FTAuda = j FTTuds.

s+ as

Also, the following assertion is proved without difficulty.

Theorem 1 (Betti formula). If u e C2(S+) n Cl(S+) is a solution of (3) in S+,
then

2 / E(u, u)da = / uTTuds.

5+ dS



3388 CHRISTIAN CONSTANDA

3. Fundamental solutions

A Galerkin representation of the solution of (3) with the right-hand side

replaced by ô(\x - y\)E2, where ô is the Dirac delta distribution, yields the
matrix of fundamental solutions [9]

D(x,y) = A*(8x)t(x,y),

where A* is the adjoint of A and t satisfies

(det A(8x))t(x, y) = ß(X + 2ß)A2(x)t(x, y) = -ô(\x - y\),

that is,

*(* » y) = ~[8nn(X + 2ß)]-{ \x - y\2 In \x - y\.

If {Eaß} is the standard ordered basis for the space of constant matrices in

Jt2x2, then

(6)

D(x,y)
1

4nß(a + 1)
(2aln|x-y|-r-2a-r-l)JE,2-2

(xa-ya)(Xß-yß)

\x-y\2

where a = (X + 3ß)/(X + ß). This shows that D(x, y) = DT(x, y) = D(y, x).
We also introduce the matrix of singular solutions of (3)

P(x,y) = [T(8y)D(y,x)]T.

Explicitly, this is written as

(7)

d
8s(y)

2

In |.x -y\ "aß +
[8u(y)

\n\x-y\\E2

a + 1
£(>•;

8    (xa-ya)(xß-yß)
\Fyß>,

8s(y) \x-y\2

where saß is the alternating tensor in the plane.

It is easily verified that D^(x, y) and P{i)(x, y) satisfy (3) at all x eM2 ,
x ^ y, and that

(8)      D(x, y) = 0(\n\x\),    P(x, y) = 0(|x|_1)   as   |jc| —► oo,    yedS.

4. Boundary value problems and uniqueness of solutions

We would like the Betti formula to hold in S~ for solutions that may include

an arbitrary rigid displacement, but this cannot be achieved without restrictions
on the behaviour of u at infinity.

Consider the class sf of vectors u e J?2x\ whose components in terms of

polar coordinates, as r = |x| —► oo, are of the form

Wi(r, 6) = r_1 (amo sinö + m\ c°sö + mo sin 30 -I- m2cos30) + 0(r~2),

u2(r, 6) - r_1(m3sinö + amo cosö + m4sin30 - mo cos 30) + 0(r~2),

where mo, ... , m\ are arbitrary constants. Also, let

si* = {u:u = Fk + s*},

where k e ^x\ is constant and arbitrary and s^ e J(2x\ r\si .
Let 3°, €, £ÏÏ, S? ÇlJ[2x\ be prescribed on 8S. We formulate the interior

and exterior Dirichlet and Neumann problems as follows:

(9)
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(D + ) Find u e C2(S+) n Cl(S+) satisfying (3) in S+ and u\dS = 3° .
(N+ )  Find u e C2(S+) n Cl(S+) satisfying (3) in S+ and Tu\dS = S.

(D~) Find weC2(5'-)nC1(5-)nj/* satisfying (3) in S~ and u\as=&.
(N-) Find « e C2(5-)nC(5-)nj/ satisfying(3) in S~ and 7^ = <$*.

Theorem 2 (Betti formula). If u e C2(S-)CtCl(S-) nsi* is a solution of (3)
in S~, then

2 / E(u, u)da = - / uTTu ds.

s- as

Proof. Let 8KR be a circle with centre at x and radius R sufficiently large.

Using (9), we see that on 8KR

in

x2(Tu), -xx(Tu)2 = g(6)R-x + 0(R~2),    jg(9)dd = 0;

o

hence, in view of (8),

/
uTTuds —> 0   as   R —► oo.

dKR

The classical argument [2] can now be applied.

Theorem 3. (i) (D + ), (D ~ ), and (N ~ ) have at most one solution.

(ii) Any two solutions of(N+) differ by an arbitrary rigid displacement.

The assertion is proved by means of the well-known procedure that makes

use of Theorems 1 and 2.

5. Elastic potentials

We introduce the single-layer potential

(V<p)(x) = JD(x,y)<p(y)ds(y)
as

and the double-layer potential

(W<p)(x) = j P(x,y)<p(y)ds(y),

as

where <p e Jt2x\.   We also define a functional p on continuous functions

C 6 -#2xi on 8S by

pC = JFTÇds.
as

Theorem 4. If <p e C(8S), then
(i) Wtpesi;
(ii) V(p e si if and only if ptp = 0.

Proof. The first part of the assertion is obtained by direct verification.  The

second part follows from the fact that, as r — \x\ -► oo,

(10) (V<p)(r,9) = M°°(r,d)p<p + ss/,
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where

4nß{a+l)M°°{r, 0)

-2a(lnr+ 1) +cos 20
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■C sin 20 r~1(a + l)sin0

sin20 -2a(lnr+l)-cos20   -r~l(a + l)cos0/ '

It can easily be verified that AM°° = 0 in E2.

Theorem 5. (i) If q> G C(8S), then Vcp and W<p are analytic and satisfy

A(V<p) = A(Wtp) = 0   in   S+US~.

(ii) If <p G C°'a(dS), a G (0, 1), then the direct values V0<p and W0<p of
Vq> and Wtp on 8S exist (the latter as principal value), the functions

^+(<P) = (V<P)\S+,    r-(<p) = (Vis-

are of class C°°(S+)nCi'a(S+) and C°°(S-) n Cl'a(S~), respectively, and

T<V\<p) = (W0* + \I)f,     TT-(<p) = (W0* - \l)<p,

where W¿ is the adjoint of W0 and I the identity operator.

(iii) If <p G Cl'a(8S), a G (0, 1), then the functions

(W(p)\s+        inS+,      _.      f (W(p)\s-       inS-,
W+(<p)+ tm\ —

ÍnS+>        *r   ,   ^      J  {W,P)IS-
W (<p) = {

(Wq-{I)(p   ondS, \(WQ + \l)<p   ondS

are of class C°°(S+) n Cl>a(S+) and CX(S~) n Cl>a(S-), respectively, and

TW+(<p) = TW~(<p) on 8S.

Proof. Part (i) follows from the classical argument for systems of partial differ-

ential equations [10] and direct verification.
For parts (ii) and (iii), we use (6) and (7) to find that

(11)

where

V(f> = 4nfi(a+l)[2aV<P + {2a + if'~ !EaßKß<P)\>

a-\

(vtp)(x) = - j (In \x - y\)(p(y) ds(y),

OS

(wq>)(x)

as
(y)

\n\x -y\ <p(y)ds(y),

(vbaß<p)(x) = j

as

Kß<P)(x) = J
as

(xa-ya)(xß-yß)

\x-y\2
(p(y)ds(y),

8    (xa-ya)(xß-yß)

8s(y) -v|2\x-y\
(p(y)ds(y),

as

<p(y)ds(y),
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and

J*"^ =     <pds.

as

The result now follows from the behaviour of all these functions in the neigh-

bourhood of 8S, which has been investigated in detail in [5, §§1.5, 1.6].

Theorem 6 (Somigliana formulae), (i) If u G C2(S+) n C!(»5+) is a solution of
(3) in S+ , then

/>

' U(x),        X G S+ ,

\u(x),   xedS,

0, xeS-

[D(x, y)T(8y)u(y) - P(x, y)u(y)] ds(y) = {

as

(ii) If u G C2(S~) n Cl(S~) is a solution of (3) in S~ and u = 0(|x|_1),
M>Q= 0(W-2) as \x\ —> oo, then

(0, xeS+,

[D(x, y)r(9,)M(y) - P(x, 30"00]<frÜO =

as
h \u(x),    x £ 8S,

_ u(x),      x G 5'".

The first part of this assertion is proved in the usual way [2]. The second part,

however, appears to be addressed incorrectly in [2, p. 187], where it is claimed

that it holds in this form if u — 0(1), u,a= 0(\x\~2) as \x\ -* oo. The
asymptotic relations (8) show that this is not the case, and that the conditions

in Theorem 6(ii) are sufficient for the result to hold.

6. Existence of solutions

If we seek the solutions of (D + ), (D ~ ), (N + ), and (N ~ ) in the form of

W+(<p), W~(<p) + Fk , T+((p), and TJ(^>), respectively, then, by Theorem
5, these problems reduce to the boundary integral equations

(®+) (w0-±i)<p = â*,

(^+) (W¿ + \l)<p=¿£,

(2!-) (W0 + ±I)<p=¿%-Fk,

(jr-) (W¿-\l)<p=S?.

It is clear from the second formula (11) that these equations are singular.

Theorem 7. (i) \ is not an eigenvalue of W0 (hence, nor of W¿ ).

(ii) - \ is an eigenvalue of IV0 and of W¿ . The null spaces of W0+^I and of

Wq + \I are three-dimensional subspaces of Ci'a(8S). The former is spanned

by {F^} ; the latter is spanned by a set of three linearly independent vectors

{0(0} which may be chosen uniquely so that F and the matrix $e4x3 are

biorthonormal, that is,

(12) p® = E,.

This is shown exactly as in [5, Theorem 2.40], since, by Theorems 3 and 4,

Wq> has the required behaviour at infinity and (N ~ ) has at most one solution.

The last part of (ii) was proved in [3].
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Setting, in turn, u = F(,) in Theorem 6(i) for xe95,we see that

/ P(x, y) ds(y) = -\E2,     j eaßyßPya(x, y)ds(y) = -^eyßxß.

as as

If we now integrate (JV~) and eaßXß(J/'~)a over 8S and use the above equal-

ities, we obtain

(13) p<p = -pp.

Theorem 8. (i) (D + ) has a unique solution for any ¿P e C1'a(8S), which can

be represented as <W+(<f>) with (p G Cl>a(dS).

(ii) (N ~ ) has a unique solution for any S? G C°'a(8S) if and only ifpS? =

0. The solution can be represented as ^~((f) with <p G C°'a(8S).

(iii) (N+ ) is soluble for any S G C°>a(8S) if and only if p@ = 0. The
solution is unique up to a matrix of the form Fk, where k G -#3x1 is constant
and arbitrary, andean be represented as ,%/'+(<p) with <p g C°'a(8S).

(iv) (D ~ ) has a unique solution for any M G Cl'a(8S), which can be repre-

sented as the sum of W~(<p) with <p e Cl 'a(8S) and a specific matrix Fk.

The assertion is proved in the usual way (see, for example, [5, §2.7]), by

means of Theorems 3-7 and the Fredholm Alternative; the latter is applicable

since, as can readily be checked, the index [11] of the singular integral equations

involved is equal to zero. In view of (12), the solvability condition for (2¡~ )

is satisfied if we choose

(14) k= ¡&&ds.

as

7. Connection with the direct method

In this section we show how the solutions of the various equations produced

by the direct method (based on the Somigliana relations) can be expressed in
terms of the solutions constructed by means of the above technique.

The boundary integral operators introduced in conjunction with the elastic

potentials satisfy the composition relations [8]

W0V0 = V0W0\     N0V0=W0*2-tl   on   C°-a(8S),

N0W0 = W0*N0,    V0N0=W2-\I     on    Cl-a(dS),

where No is the operator defined on Cl'a(8S) by

(16) Nof=TW+(f) = TW~(f).

The Neumann problems.   We rewrite the Somigliana relation for a solution of

(3) in S+ (Theorem 6(i)) as

(17) T+(Tu\dS)-W+(u\dS) = u   in   S+.

For (N+ ), let Tu\9s = S (known) and u\dS = y/ (unknown). Then (17) yields

(^+) (W0 + \l)y=Vo@.

Applying Vq to (yV+) and using (15), we see that

V0(W0* + \l)<p = (W0 + \l)(Vo<p) = Vo@,
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which, subtracted from (A?+), yields (Wo + \l)(y/ - Votp) = 0. By Theorem
7(ii), this means that

(18) y/ = V0<p + Fk,

where k G -#3X i is constant and arbitrary. The arbitrariness in (18) is justified,
since the solutions of both (JV+ ) and (yf+ ) are not unique.

For (N ~ ), we need u e si. Then Theorem 6(ii) holds, and we rewrite the
corresponding Somigliana formula as

(19) -y-(Tu\as) + W-(u\dS) = u   in   S-.

Once more, let Tu\gs — ̂  (known) and u\ds = y/ (unknown). From (19) we

see that

(■A7') (Wo-\l)y = VoS?.

Proceeding as above but operating with (JV~ ), we find that (W0 - \l) x

(y/ - Noç>) — 0, from which
y/ = V0<p,

since, by Theorem 7(h), \ is not an eigenvalue of W0. The solvability condition

pS? = 0 for the exterior Neumann problem, (13), and Theorem 4 ensure that

u indeed belongs to si , as required.

The Dirichlet problems. These can be approached within the framework of the

direct method in two ways.

First version. For (D + ), let u\q$ = 3° (known) and Tu\qs = V (unknown). If

(17) is used again, we obtain

(2+) V0y/ = (Wo + y)â»,

which is an equation of the first kind.

In [3] it is shown that for every C2-boundary curve 8S there exists a unique

constant W G -#3x3 such that l^O = FW, and that if ^ is singular, then

( 2l+ ) does not have a unique solution. More specifically, the null space of

Vo consists of all / = <Pa , where he/jxi is any constant vector such that
Wa = 0.

Since y/ = Tu\ds , we see that, by (5), y/ must also satisfy

(20) py/= f FTTuds= f FTAudo = 0.

as s+

If det W ¿ 0, then ( ¿&+ ) has a unique solution. Applying W0 + \l to ( 2¡+ )
and using (15), we obtain

(W2 - \l)<p = V0N0V ={W0+ \I)&,

which, subtracted from (2+), leads to V0(y/ - Noy>) = 0; hence, we conclude

that

(21) y/ = No<p.

This also shows that y/ satisfies (20), since pNo = 0 on Ci'cc(8S) [8].

If detf = 0, then y/ - N0<p + <Pa for any a such that fêa = 0. But this
arbitrariness is spurious, because to satisfy (20), in view of (12) we must have

a = 0, so we end up once more with the formula (21).
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For (D - ), let u\as = & (known) and Tu\d$ = y/ (unknown). Here the

solution is sought in si*, that is, u-u^-vFk. (Because of the formulation

of the problem in terms of the class si* and the uniqueness of its solution,

it is obvious that the rigid displacement is the same as that corresponding to

(14) in Theorem 8(iv).) Consequently, (19) holds for u - Fk G si . Since

(u-Fk)\dS = &-Fk and T(u-Fk)\dS = Tu\ds = y/ , (19) yields the integral
equation of the first kind

(2-) Voy = (Wo-\I)(M-Fk).

Also, from (19) it follows that

(22) -Vy/ + W{âZ-Fk) = u-Fk   in   S~.

Since the last two terms in (22) belong to si, we deduce that so does Vyi.

Consequently, by Theorem 4(ii), yi must again satisfy the condition py/ — 0.

(This can also be verified by direct calculation.) An argument similar to that in
the case of (D + ) now leads to (21).

Using the solution (21) of (D~ ), we can also solve a more general exterior

Dirichlet problem, which requires to find v G C2(S~) n Cl(S~) such that

Av = 0   in   S~ ,

(23) v\dS=m,

v = M°°q + Vs*'    as   |x| —>oo,

where q G -#3xi is a prescribed constant vector. At this stage we already

know from (22) that u = -T-(y/) + W~(9l - Fk) + Fk satisfies the first two

equalities (23). However, u = u^' as \x\ —> oo , which is not good enough if

q t¿ 0. To get the right result, we consider a solution for (23) of the form

v = u + V-(Q>q)-Fl,

where / G ̂ x\ is a constant vector to be determined. Taking (10) and (12)

into account, we see immediately that v satisfies the first and third relations

(23) for any /, and the second one if / = Wq. Thus, in view of (21), the

(unique) solution of the problem (23) is

v = T-(<l>q - N0<p) + W~(3l) + F(k - Wq),

since, as can easily be checked, W~(F) - 0.

Second version. A modified approach in the direct method enables us to avoid

the use of equations of the first kind for the Dirichlet problems. Thus, if we

apply T to the Somigliana formulae (17) and (19) (with u replaced by u-Fk ),

then, by Theorem 5, (16), and the fact that W~(F) - 0, we arrive at the
equations

(&+) (W¿ - \l)y/= No&>,

{&-) (W0* + ±I)y/ = No¿%.

Taking Theorem 7(ii) into account, we deduce that ( 2+ ) has a unique so-

lution, and that (2~ ) is solvable since

fFJNo3?ds = pNo£? = 0.
as
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The solution of ( 3S~ ) is unique up to a term of the form <ba, with a G J^x i

constant and arbitrary.

Applying No to (2i+ ) and using (15), we find that

No(Wo - \l)<p = (W0* - ±/)(AW) = No&.

We now eliminate N0¿P between this equality and ( 3)+ ) to obtain

(W0*-±I)(y,-No<p) = 0.

Since \ is not an eigenvalue of W0*, this leads back to (21).

A similar argument in the case of (3¡~ ) and (2~ ) brings us to

(W0* + t2I)(y,-N0<p) = 0,

from which y/ = N0<p + <t>a. But pyi = 0 (here y/ = Tu\dS, as in the first
version of the method), so we conclude once more that tp and y/ satisfy (21).

8. Conclusions

The real boundary integral equation method developed in §§4-6 represents

the extension to plane elasticity of the corresponding three-dimensional tech-

nique [4]. Here, however, the need arises to restrict the solutions of the exterior
problems to the finite energy classes si and si *. Far from being an artificial

mathematical requirement, these classes have an acceptable physical meaning.

The general analytic solution of (3) in S~ is [1, Chapter V]

(24) 2ß(ux + iu2) = aO.(z) - zQ'(z) - œ(z).

If p(Tu\as) = 0 and the stresses and rotation at infinity are zero, then the

complex potentials above are

Q(z) = az~l + 0(\z\~2),    co(z) = bz-1 +0(\z\~2),    aeC,    èel,

and (24) yields the far-field pattern (9), with

mo = Ima,     m\=aRea-b,     m^ = ~(aRea +b),     m2 = m4 = Rea.

This implies that a solution of class si corresponds to a plane problem where

the stresses and rotation vanish at infinity.

To guarantee that the solution belongs to si , for (N ~ ) we must require that

the total stress acting on 8 S be zero (Theorem 8(ii)), which is not necessary in

the three-dimensional theory.

As shown in §7, the above method seems to underpin the results of the direct

method in the sense that the solutions of the latter can be expressed in terms

of those of the former by means of operators intrinsically connected with the

mathematical structure of the argument.
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