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Abstract. In this note we prove some generalizations of Taketa's theorem on

solvability of M -groups.

Let Irr(tr) denote the set of all complex irreducible characters of a finite

group G (only finite groups are considered in this note), Irri(G) the set of all

nonlinear characters in Irr(tr), Lin(C7) the set of all linear characters of G,

and Iit(t) the set of the irreducible constituents of a character x. A character

X £ Irr(C7) is said to be monomial if there exist H < G and X £ \Àn(H)

such that x — ̂ G ■ A group G is said to be an M -group if all its irreducible

characters are monomial. Taketa ([Hu], Satz 5.18.6(b)) has proved that M-

groups are solvable. It is natural to suppose that a group G is solvable if

the set of its monomial irreducible characters is large. As a corollary of our

considerations one obtains that a group G is solvable if all characters of the set
{X £ lrr(G) |*(1) < b(G)} are monomial (here b(G) is the maximal degree of

irreducible characters of G). Further on if each irreducible character of G is

induced from a character of degree at most 2, then G is solvable (Theorem 7).

In the sequel S denotes a nonempty set of simple groups. A group G is

said to be an 5-group if it is a tower of groups from S. We consider the group

G = {1} as an S-group. A character x £ Irr(G) is said to be S-monomial

if there exist H < G and X £ Irr (H) such that X — ̂ G and H/kerX is an
S'-group. The set of all S-monomial characters of G is denoted by lrrs(G).

Lemma 1. Let N > {1} be a normal subgroup of a group G. If

\lrr(G)-lrr(G/N)\<3,

then N is solvable.

Proof. Let M C G. Denote by ko(M) the number of conjugacy classes of

G having nonempty intersections with M. In particular k(G) = ko(G) is the

class number of G. It is known that G is solvable if k(G) < 4. So if A is

nonsolvable, then N < G. Since k(G) = |Irr(G)|, by hypothesis

k(G/N) + kG(N) - 1 < k(G) < k(G/N) + 3
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and kG(N) < 4. In the sequel we suppose that N is nonsolvable. By Burnside's

{p, i?}-theorem one has kG(N) > 4. Thus, kG(N) = 4. Let

cd(N) = {tp(l)\tp £lrr(N)} = {I, dx, ... , ds},        1< dx < ■ ■■ < ds.

Take tp¡ £ Irr(A) with tp¡(l) = d¡, i = I, ... , s. It follows from Clifford's
Theorem that (tpf, <pG) = 0 for i ^ j , so s < 3 . By the Isaacs Theorem [Isl]

we have s > 3. Thus s = 3 . Since kernels of all characters from Irr(<pf) do

not contain N and | Irr(G) - Irr(G/A)| < 3, it follows that

tpf = erf,    i =1,2, 3,        Irr(G) - lrr(G/N) = {Xx, X2, X3}-

Let IG(tpi) be the inertia group of tpi in G. Set \G : IG(tpi)\ = U . Then by

Clifford's Theorem /'( 1 ) = e,r,i/;, \G:N\ = eft¡, i = 1, 2, 3. Let n be the set
of all prime divisors of \G : N\. Then n = 7t(ey;), ¿=1,2,3 (here n(n) is
the set of prime divisors of a positive integer n). As kG(N) = 4 it follows from

Burnside's {p, #}-theorem that N is simple. Take p £ n. If x G Irr(C7) and

p |/(1), then N<kerx by the above. Denote by G(p') the intersection of the

kernels of all nonlinear x £ Irr(C7) such that p\x(l) ■ Obviously N < G(p').
Since G(p') is ^-nilpotent [Be] and N is nonabelian simple, then p\\N\. Thus

A is a 7r'-Hall subgroup of G. By the Schur-Zassenhaus Theorem there exists

in G a 7i-Hall subgroup H. Since N < G, it follows that H > {1}. Take
x, an element of prime order in H. Since N is not nilpotent, there exists an
element y £ N- {1} such that xy = yx ([Hu], Hauptsatz 4.8.7(a)). Since any

(/-conjugate of xy is not contained in HöN, then

k(H) + 3 = k(G/N) + 3 = k(G) > k(G/N) + kG(N) - 1 + 1 = k(H) + 4,

which is a contradiction.   G

In Remark 1 we use the Täte Theorem (see [Is2, Theorem 6.31]). Let

AP(G)/G' £ Sylp,(G/G'), P £ Sylp(G). Obviously, A'(P) = P'. The Täte
Theorem asserts that PC\AP(G) = P' implies PnOp(G) = CP(P) = {1} , where
Op(G) is the unique minimal normal subgroup of G such that G/Op(G) is a

p-group. Assume that A is a normal subgroup of G, and Pr\N < P'. We shall

prove that N has normal p-complement. Without loss of generality we may

assume that G = PN. Then P'N = AP(G) and P n P'N = P'. By the Täte
Theorem one obtains Pr\OP(G) = 0"(P) = {1} so Op(G) is a p'-subgroup.

Hence G, and so N, has a normal ^-complement.

Remark 1. In the sequel we shall use the following assertion: If A is a non-

trivial normal subgroup of G and |{*(1)|* £ Irri(C7) -Irr(G/A)}| = 1, then N

is solvable. There is an extension of elementary abelian group N of order 24

by A5 which satisfies the above equality. Let us prove this assertion. Assume

that N is nonsolvable. Let {1} < Nx < N and Nx he normal in G. Since

lrrx(G/N) c lrrx(G/Nx) (this is due to the fact that the sum of the nonlinear

irreducible characters of a nonabelian group is a faithful character), then

Irr,(G) - Irr(C7/A,) c Irr^G) - Irr(G/A),

lrrx(G/Nx) - Irr(G/N) c Irri(C7) - Irr(G/A),

and it suffices to prove our assertion in the case when A is a minimal normal

subgroup of G. Take a nonlinear X £ Irr (A) and x e Irr(AG).  Let p he a
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prime divisor of X(l). Then p |#(1) by the Clifford Theorem. By reciprocity

A is not contained in ker* , i.e. x € Irr^C?) - lrr(G/N). Take P £ SyL,(t7).

Then PnN - Px £ Sylp(N) and Px is not contained in P' according to the Täte
Theorem (see text before this remark). Therefore there exists a linear character

p of P such that Px is not contained in ker p. Since A' = A, it follows

that N < G'. Since p\pG(l), there exists x £ lrr(pG) such that p\x(l). By

reciprocity A is not contained in ker x, so x £ lrrx(G) - lrr(G/N). Therefore

x(l) = x(i), p |^(1), p\x(l), a contradiction. Thus, A is solvable.   Q

Remark 2. Sometimes in the sequel we will use the following proposition: Let

X = XG £ lrr(G) be faithful, H < G, X£ lrr(H), and H/kerX an 5-group.
If A is a minimal normal subgroup of G and N < H, then A is an S-

group. This is true since A is not contained in ker X, so Ai is not contained

in ker X where Ai is some simple direct factor of A. Then A! n ker A = {1} ,

so the subnormal subgroup Nx kerX/kerX (= Nx) of S-group H/kerX is an

S-group as well. Since A is a direct product of groups isomorphic to Ai, it is

an S-group, and our claim is proved.   D

Remark 2 is due to the referee.

Consider the following property of a group G :

(*) Whenever /, x £ lrr(G) with kerr = ker# and x(l) < t(1), then / is

S-monomial.
We note that epimorphic images of (*)-groups are (*)-groups.   Now the

number of nonmonomial irreducible characters in (*)-groups is not bounded.

Theorem 2. Let S be a set of simple groups containing groups of all prime orders.

Then any (*)-group G is an S-group.

Proof. Suppose that G is a counterexample of minimal order. If M, A are

distinct minimal normal subgroups of G, then MN/M (= A) as a normal

subgroup of an S-group G/M is an S-group (G/M is an S-group by induction,

so the claim follows from the Jordan-Holder Theorem). As G/N is an S-group

by induction, then G is an S-group, a contradiction. Thus G contains only

one minimal normal subgroup A. By assumption A is not an S-group. In
particular A is nonsolvable. Since P)kert = {1} (here x runs over the set

Irr(C7)), then a group with a unique minimal normal subgroup has a faithful

irreducible character. Take in Irr(G) a faithful character x of minimal degree.
Suppose that ¿(1) > t(1) for all faithful x £ lrr(G). Then all faithful

irreducible characters of G have the same degree and A is solvable by Remark

1, a contradiction. Thus /(l) < t(1) for some faithful x £ Irr(G), so x 1S

S-monomial by hypothesis. Therefore there exist H < G and X £ lrr(H) such

that HI ker X is an S-group and x = Xa. Since x is faithful and G is not an

S-group, then H < G. Take ¿; £ lrr((lH)G). Because (1#)G is reducible, then

¿;(1)</(1). Hence A < kerc; and N <ker((lH)G) = HG = f}xeGHx < H. In
view of Remark 2, A is an S-group, a contradiction.   D

Corollary 2.1. Let S be the set of all groups of prime orders. A group G is

solvable if and only if each x e Irr(C7) with ^(1) < b(G) is S-monomial.

Corollary 2.2. Let n be a set of primes. A group G is a n-group if and only
if for each x C Irr(C7) there exist H < G, X £ lrr(H) such that H/kerX is a

n-group and x = XG.
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Let X(G) be the set of all faithful irreducible characters of G, Y(G) = {j;e
X(G) | x is S-monomial}, V(G) = X(G) - Y(G).

Definition. A group G is MSk if whenever C7/A is a monolith, then \V(G/N)\

< k and t(1) < *(1) for x £ Y(G/N), x e V(G/N).

We note that epimorphic images of MSk -groups are MSk -groups.

Theorem 3. Suppose that a set S is such as in Theorem 2. If G is an MSy

group, then it is an S-group.

Proof. Assuming that G is a minimal counterexample we see that G contains

only one minimal normal subgroup A, G/N is an S-group and A is not

an S-group. Therefore lrr(G) contains a faithful character. Since A is non-

solvable, there exist in Irr(G) at least four faithful characters by Lemma 1. Take

in Irr(G) a faithful S-monomial character x of minimal degree (x exists by

condition). By definition *(1) < t(1) for every faithful x £ Irr(G). Then

there exist H < G and X £ lrr(H) such that x = ¿G and H/kerX is an

S-group. Since (1#)G is reducible, all its irreducible constituents p satisfy

p(l) < x(i) ■ Therefore A < ker(l//)G < H, and A is an S-group by Remark
2, a contradiction.   □

In particular AfSn-groups are S-groups. A character x £ IrrCG) is said to

be monolithic if GI ker x is a monolith. Note that G is an MSn-group if

every monolithic character x is S-monomial. In particular if every monolithic

character x of G is monomial, then G is solvable. This is a generalization of

Taketa's Theorem.
In the same way we may prove the following

Proposition 4. Let A > {1} be a normal subgroup of G. If all characters

from Irr(G) - lrr(G/N) are monomial, then N is solvable. In particular, the
intersection of the kernels of the nonmonomial irreducible characters of G is
solvable.

Proof. Suppose that A is nonsolvable. Let M be the last member of the

derived series of A. By assumption M' = M > {1}. Since Irr(GfN) C
lrr(G/M), it follows that Irr(G) - Irr(G/Af ) C lrr(G) - lrr(G/N), and it suffices
to prove the proposition for M instead of A. In view of Taketa's Theorem one

has M < G. Since f| ker x = {1} where x runs over the set In^ (G), there is in

Irr(G) - lrr(G/M) a nonlinear character x of minimal degree (x is nonlinear

in view of M = M' < G'). By condition there exist H < G and X £ Lin(H)

suchthat HI ker X is cyclic and x = ^G ■ Take y/ £ Irr((l//)G). Since *(1) > 1,
it follows that H < G and (1#)G is reducible. Hence ^(1) < *(1) so that

M < ker y/ by the choice of x ■ Hence M < ker((l//)G) = HG < H. Since
HI ker X is solvable and M' = M, it follows that M < ker X. Therefore
M < ker*—a contradiction with a choice of x ■ Let D be the intersection of
the kernels of the nonmonomial irreducible characters of G. Then all characters
from Irr(G) - lrr(G/D) are monomial. Hence, D is solvable.1    D

'Analogously, if all characters from Irr(G) - lrr(G/N) are S-monomial, then N is an 5-

subgroup. In particular, the intersection of the kernels of the non- S-monomial irreducible charac-

ters of G is an S-group. Instead of M in the proof, we have to take Ns , the intersection of such

normal subgroups A in N such that N/A is an S-group.
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Conjecture 1. If all nonmonomial irreducible characters of a group G have the

same degree, then G is solvable.

We do not know whether G is solvable if it contains only one nonmonomial

irreducible character.

Conjecture 2. Suppose that for every nonlinear x £ ^(G) there exist H < G

(strict inclusion) and X £ lrr(H) such that * = AG. Then G is solvable.

Corollary 5. Suppose that S is the set of groups of all prime orders. If all x ^

\rr(G) with *(1) > 3 are S-monomial, then G is solvable.

Proof. Take x € Irr(G). Suppose that *(1) < 4 and G/kerx is nonsolvable.
Then from the classification of linear groups of degrees 2 and 3 it follows that

there exists a normal subgroup A/kerx in G/kerx suchthat G/A is one of
the groups PSL(2, 5), PSL(2, 7) [Bl]. Take x £ lrr(G/A) such that t(1) = 4
if G/A = PSL(2, 5) and t(1) = 6 if G/A = PSL(2, 7). Since there is not a
subgroup H/A in G/A such that I < \G : H\ < x(l), our condition does not

hold for G/A and so for G. Thus G/kerx is solvable for all x € Irr(G) with

*(1)<4.
Suppose that G is a counterexample of minimal order. Then G contains

only one minimal normal subgroup R, G/R is solvable and R is not solvable.

Take in Irr(G) a faithful character x of minimal degree. By the above *(1) >

3 . Then there exist H < G and X £ Irr(H) such that H/kerX is solvable and

X = XG. Since for each irreducible constituent x of (1#)G one has t(1) <

\G : H\ < *(1), it follows that R < kerr, so R < ker(l#)G < H. Since
H / ker X is solvable and R = R', it follows that R < ker A, so R < ker*, a
contradiction.   D

It is impossible to replace in Corollary 5 the number 3 by 4. In particular if

all * £ Irr(G) with *(1) > 3 are monomial, then G is solvable.

Question. Classify all nonsolvable groups G such that all * e Irr(G) with

*(1) > 4 are monomial.

Denote by p(G) the minimal prime divisor of \G\.
In the sequel we use the following known result ([Is2], Problem 3.4):

Lemma 6. Let G be a nonabelian simple group, p a prime divisor of \G\,

P £ Sylp(G). If x£ Irr(G) is faithful and *(1) = p, then P is of order p.

Theorem 7. Suppose that for each irreducible character * of G there exist H <

G, X £ lrr(H) such that X(l) < p(H) and XG = x ■ Then G is solvable.

Proof. Assume that G is a counterexample of minimal order. Then G contains

only one minimal normal subgroup R, G/R is solvable and R-Fx x ■ ■ ■ x Fs

where F¡ are isomorphic nonabelian simple groups. Hence G has a faithful

irreducible character. Take in Irr(G) a faithful character * of minimal degree.

By hypothesis there exist H < G, X £ lrr(H) such that X(l) < p = p(H)
and * = XG. To show that R < H, let us consider (lH)G ■ If H = G,
then R < H. So suppose that H < G. Then (1//)G is reducible. So all
irreducible constituents of (1//)G are not faithful (their degrees less than *(1))

and R < ker(l#)G < H. Since * = XG is faithful, R = R' is not contained in

ker A. Hence Xr has no linear constituents. Therefore X(l) — p(H) and Xr is



3268 YAKOV BERKOVICH

irreducible (Clifford). Therefore p(H) | \R\ and p(H) - p(R) - p . Moreover

there exists i e {1,..., s} such that the restriction of X on F¡ is irreducible.

Let P be a Sylow p-subgroup of F¡. Then P is of order p (Lemma 6) and

Fj has a normal p-complement by Burnside's normal /^-complement theorem.

Hence R has a normal p-complement as well, contradicting the equality R' -

R.   a

In particular if every irreducible character of G is induced from a character

of degree at most 2, then G is solvable.

Conjecture 3. If any irreducible character of a group G is induced from a char-

acter of degree at most 3, then G is solvable.2

Conjecture 4. If all irreducible characters of //-degrees from Irr(G) are mono-

mial, then G is p-solvahle, unless p < 5.

Conjecture 5. If all irreducible characters of composite degrees are monomial,

then G is solvable.

Conjecture 6. Suppose that every * 6 Irr(G) such that *(1) is not a power of

a fixed prime p is monomial. Then G is solvable.

Let A be a normal subgroup of G. Set c(N) — |{*(1)|* £ Irr^G), A
is not contained in ker*}|. If c(N) = 1, then A is solvable (Remark 1).
Probably if c(N) = 2, then A is solvable too. If A = G = A5, then c(N) = 3 .
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2This conjecture is true. Moreover, if any irreducible character of a group G is induced from a

character of degree at most 4, then G is solvable, unless G/S{G) = A} ; here S(G) is the solvable

radical of G (see Ya. Berkovich, On the Taketa Theorem (to appear)).


